如何一步步从数据产品菜鸟走到骨干数据产品
网上关于数据分析师的文章很多,但是关于数据产品经理的文章很少,所以经常有各个领域的垂直网站来和我交流,问我数据产品应该怎么做,人怎么培养,团队应该怎么建。所以我就把别人的问题、自己的回答,结合自身的成长经验,做了一个课程。一、数据产品工作简介:
1.1 数据产品经理的概念和范围:
首先,思考两个问题:
你心中的数据产品都包括哪些?
你认为数据产品经理是做什么的?
至少,我每次介绍自己是数据产品经理的时候,经常收到别人问:我有**问题,能帮我看看怎么回事么?这个数据为什么会变成这样?
我:%¥……#%¥@;
好,大家一起和我念:数据产品经理不是数据分析师,数据产品经理是产品经理的一种,数据分析是产品经理的核心能力之一,产品经理是数据产品经理的核心能力之一。
首先,数据产品经理必须了解不同的公司,在不同的阶段,需要哪些数据产品,并能够制作出来,这是此职位的核心要求,也是我本系列文章重点介绍的部分。
其次,数据产品经理必须有足够的数据分析能力,所以,我会讲一些数据分析的基本思路和方法论。如果有了数据分析的思维,再跟公司业务结合就会比较容易。
最后,数据产品经理是产品经理的一种,所以要同时具备产品经理的能力:了解用户,需求调研,方案设计,协调技术、测试、设计等,不过这些网上有很多文章了,所以我只会讲数据产品更需要注意的地方。
1.2 数据产品的种类:
在公司中,能够发挥数据价值的产品,即是数据产品;
一般,主要从用途来分,分为以下两种:
分析类产品:通过数据的计算和展现,帮助业务进行分析、决策的产品,大概包括以下几类:
流量分析产品:可以帮助产品经理进行页面设计、功能改进和改版评估等
销售分析产品:可以帮助运营分析
这两个产品都是公司的必备,对公司各部门都有较大帮助:
帮助产品经理进行页面设计、功能改进和改版评估等;
帮助运营人员做用户分析、活动分析等;
帮助市场人员做投放分析优化等
当公司某一块业务比较重要,又有专门的部门负责时,一般会把数据分析系统独立出来,比如:
供应链分析系统;
客服分析系统;
会员分析系统。
算法类产品:通过数据的计算,直接更改页面的逻辑的产品,成为算法类产品;
比如:
个性化推荐;
搜索;
用户画像;
程序化购买广告;
等;
这两种是根据公司的情况来,区别并不是很明显,而且会不断演变。
比如:
对供应链支持的,可能最开始是销售分析系统里,一个库存分析的报表而已;
后来,加入了各种补货预警、成本分析等报表,就变得很复杂,独立出来成为系统。
再后来,选品和销售预测,都是需要较强的算法支持,就变成了一个算法类产品。
在很多时候,我们进入的都不是BAT,而是一个垂直领域的领头公司,独角兽公司,这是很不错的选择。但是这种公司都不会一上来就配备很大的数据团队,可能也没有非常懂的领导,这时候需要数据产品经理不断规划数据产品的未来,从而协调资源。
所以一个数据产品经理,不仅要了解各个数据产品,还要了解,在公司什么样的情况下,这个产品以什么样的形态出现。三个月后,公司可能会什么样,需要什么样的数据产品。
这样,你才可以去申请技术人员和其他资源。
*、问题回复:
今天收到了很多问题,只能先集中把问题解决一下。
1. 为什么会有这个岗位?
简单说,就是公司已有数据,希望专业的人,来让数据产生价值。
业务型的公司,经过一段时间飞速发展后(通常为半年到一年),一般会出现以下的情况:
1、 得到资本方的认可,领导层会雄心勃勃,启用数据方面的战略。
2、 公司自身,也会碰到非常多管理的问题,就会希望结束粗放式的增长和运营方式,转向更精细化、更专业、更有效率、更能控制成本的增长。
3、 各部门都按自己的需求提取数据,会出现口径不统一的情况,比如一个部门和另一个部门的同一指标,出现不同解读。
4、 各部门自己提的数据需求,基本上总是会有漏的环节。
所以,这时候,需要有个懂的人,梳理各部门需求,汇总整理数据流程,将数据体系化,不然就乱了。
这种情况下,对数据产品经理的要求是:
1、要懂分析,不然就会变成一个只出报表的传话筒。
2、要懂数据的产生逻辑,要能建立一个业务模块的数据指标体系,不然,出来的东西会比较乱,可能迟迟上不了线;
还有另一种情况就是大数据团队招人。
这种一般是大数据团队,有自己的技术和算法人员,已经做出一定的成果(比如推荐系统最开始上线时,即使团队中没有产品经理,只有算法工程师,也是很容易产生比较好的推荐结果),得到了领导高层的认可。但是如何将算法,更好的服务于公司的商业,产生直接的销售结果,这是算法人员很难有精力去想的,就要招一个产品经理来。
这时候对产品经理的要求是:又要懂商业,人家就是找你来变现的,又要懂算法,又要懂产品,要求非常高。大家觉得大数据的产品经理比较贵,都是这种。
2. 如何入门:
我招过不同背景的人,所以总结下来:
基本要求:理工科背景,性格要温顺,要能沉下心来。数据指标实在是一个太繁琐的事情,对性格的要求非常高。而且如果是数据分析,在一大堆数据里刨来刨去,很可能半天也没有结果,所以性格首要的。
以下是加分项:
1、 数据分析师出身。数据产品最好还是要提供解决方案,并不是说,业务人员告诉你他们碰到什么问题,你就能做出好的产品的。要心中有商业模型,有很多解决方案,看到时候需要提供哪一种。
这些方案累积的过程,大部分需要训练,可是谁有时间去训练呢,而数据分析人员的工作本身就是思考各种问题解决方案的过程,要想办法把数据的问题找出来,并且能够作为报告展现。所以招数据分析人员做产品经理是一个快速省事的办法。
如果我的团队中没有分析经历的,一般我都会让其去做几份分析报告,训练思路。
2、 业务人员出身,做过产品经理的,一般知道产品经理需要哪些数据,才能优化页面;做过市场的、运营的,知道哪些数据能够提升效果,有这种背景,我们也会需要;
3、 数据提取员:每个部门需要数据时,就会有一个提取人员,用sql从数据库中提取数据。这种职位我会推荐应届生去做,首先,了解公司后台各大系统的关系和产生数据,其次,了解业务部门的情况,还可以了解公司的发展重点。最主要是,他了解每个数据是怎么产生的,这是其他背景的产品经理没有的优势,开发很喜欢这样的人写的prd,不管业务方向对不对,至少需求是不用改的。
4、 算法产品经理,一般我会要求有数学背景的硕士,带起来很快,性价比高。
5、 其实还是看个人,因为我们现在的团队每个方向擅长的人都有,所以如果我觉得一个人比较有潜力,就招进来,让他挨个职位做一遍,就培养出来了。
3. 其他问题:
流量分析产品:可以帮助产品经理进行页面设计、功能改进和改版评估等;
销售分析产品:可以帮助运营分析,这个帮助指的是什么?如果是通过产生的数据报表进行预判的话,那和数据分析师的角色会重叠。
分析类产品,无论报表还是页面,都是希望使用者可以看到问题,或者得到结论,这是帮助的意思。也就是说把数据分析师的思维给固化成产品逻辑。
举例:比如周报,之前可能是分析师把所有的数据汇总在一起,查看,分析,然后告诉你哪里该改动了。
但是数据产品把分析师每次用的数据和思维,图形化展现出来,你自己做为一个产品经理,看看就知道哪里出问题了。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20