方差齐性检验的原理
统计学搜索整理汇总——方差齐性检验的原理
LXK的结论:齐性检验时F越小(p越大),就证明没有差异,就说明齐,比如F=1.27,p>0.05则齐,这与方差分析均数时F越大约好相反。[www.NiUBB.nET]
LXK注:方差(MS或s2)=离均差平方和/自由度(即离均差平方和的均数)
F=MS组间/MS误差=(处理因素的影响+个体差异带来的误差)/个体差异带来的误差
=================
F检验为什么要求各比较组的方差齐性?
——之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。
在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。
简单地说就是在进行两组或多组数据进行比较时,先要使各组数据符合正态分布,另外就是要使各组数据的方差相等(齐性)。
-----------------
方差分析(Anaylsis of Variance, ANOVA)要求各组方差整齐,不过一般认为,如果各组人数相若,就算未能通过方差整齐检验,问题也不大。
One-Way ANOVA对话方块中,点击Options?(选项?)按扭,
勾Homogeneity-of-variance即可。它会产生Levene、Cochran C、Bartlett-Box F等检验值及其显著性水平P值,若P值<于0.05,便拒绝方差整齐的假设。
顺带一提,Cochran和Bartlett检定对非正态性相当敏感,
若出现「拒绝方差整齐」的检测结果,或因这原因而做成。
---------------
用spss处理完数据的显示结果中,F值,t值及其显著性(sig)都分别是解释什么的? 答案
一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝 1
虚无假设null hypothesis,Ho)。[wwW.Niubb.nEt]相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。
至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,
比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,
但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?
会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同? 为此,我们进行t检定,算出一个t检定值,
与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,
看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。
若显著性sig值很少,比如<0.05(少於5%机率),
亦即是说,「如果」总体「真的」没有差别,那麼就
只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。
虽然还是有5%机会出错,但我们还是可以「比较有信心」的说:
目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,
「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在著差异。
每一种统计方法的检定的内容都不相同,
同样是t-检定,可能是上述的检定总体中是否存在差异,
也同能是检定总体中的单一值是否等於0或者等於某一个数值。
至於F-检定,方差分析(或译变异数分析,Analysis of Variance),
它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。
它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equality of Variances)检验等情况。
----------
如果需要进行方差分析,就要进行方差齐性检验,即若组间方差不齐则不适用方差分析。但可通过对数变换、平方根变换、倒数变换、平方根反正弦变换等方法变换后再进行方差齐性检验,若还不行只能进行非参数检验.
除了对两个研究总体的总体平均数的差异进行显著性检验以外,我们还需要对两个独立样本所属总体的总体方差的差异进行显著性检验,统计学上称为方差齐性(相等)检验。
方差齐性实际上是指要比较的两组数据的分布是否一致,通俗的来说就是两者是否适合比较
为什么要做方差齐性和正态检验?
主要是确认数据的合理性(不具备相关性)而已。
构造的统计量需要样本有正态等方差的条件,
或者说是这样的条件情况下的一种判断,
失去了这个前提,后期的判断分析都是空中楼阁。
就像讨论如何成为一个好男人,那么前提他必须是一个男人
而且方差齐性检验的Bartlett方法也是以正太分布为前提的,
其所构造的卡方统计量必须满足样本为正态分布。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06