
基本概念
决策树是分类算法。
数据类型:数值型和标称型。因为构造算法只适用于标称型,所以数值型数据必须离散化。
工作原理
利用香浓熵找到信息增益最大的特征,按照信息增益最大的特征划分数据,如此反复,让无序的数据变的更加有序。使用ID3算法构建树结构。当传入一个新数据时,按照数据找到对应树节点,直到最后没有叶子节点时,完成分类。
样例
不浮出水面是否可以生存? 是否有脚蹼? 是否是鱼类?
通过“不浮出水面是否可以生存”和“是否有脚蹼”这两个特征来判断是否是鱼类。构建一个简单决策树,如果得到一个新的生物,可以用此来判断是否是鱼类。
样例代码
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers'] return dataSet, labels
香农熵公式
如果待分类的事务可能划分在多个分类之中,则符号Xi的信息定义为:
其中P(Xi)是选择该分类的概率
为了计算熵,需要计算所有类别所有可能值包含的信息期望值总和,公式为:
其中n是分类的数目
香农熵算法
def calcShannonEnt(dataSet):
# 选择该分类的概率 就是每个类型/总个数
# 总数,多少行数据
numEntries = len(dataSet)
labelCounts = {} # 取到的每个类型个数
for featVec in dataSet:
currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 得到选择该分类的概率
prob = float(labelCounts[key])/numEntries # 按照公式
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
按照香农熵划分数据
除了需要测量信息熵,还需要划分数据集,度量花费数据集的熵,以便判断当前是否正确划分。 循环计算香浓熵和splitDataSet(),找到最好的特征划分方式。
def splitDataSet(dataSet, axis, value):
# 这个算法返回axis下标之外的列
retDataSet = [] for featVec in dataSet: if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet):
# 先取最后一列,用在标签结果:是鱼或不是鱼。
numFeatures = len(dataSet[0]) - 1
# 原始香浓熵
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
# 遍历所有的特征
for i in range(numFeatures): # 创建一个列表包含这个特征的所有值
featList = [example[i] for example in dataSet] # 利用set去重
uniqueVals = set(featList)
newEntropy = 0.0
# 计算该特征所包含类型的香浓熵之和
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet) # 得到信息增益
infoGain = baseEntropy - newEntropy # 取最大的信息增益,并记录下标
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i # 返回下标
return bestFeature
数据集需要满足一定的要求:
数据必须是一种有列表元素组成的列表。(二维数组)
所有列表元素必须有相同长度。
最后一列必须是当前实例的标签。
递归构建决策树
多数表决算法
如果数据集已经处理了所有属性,但是类标签依然不是唯一的,此时需要决定如何定义该叶子节点,在这种情况下,我们通常会采用多数表决决定该叶子节点。
import operator def majorityCnt(classList):
# 排序取出种类最多的
classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
构建树算法
def createTree(dataSet,labels):
# 取出结果
classList = [example[-1] for example in dataSet] # 如果结果里的第一个元素所代表的数据个数等于结果本身,说明没有其他分类了
if classList.count(classList[0]) == len(classList):
return classList[0] # 如果没有更多数据了,超过一个才有分类的意义
if len(dataSet[0]) == 1: # 多数表决,返回出现次数最多的
return majorityCnt(classList) # 选出最适合用于切分类型的下标
bestFeat = chooseBestFeatureToSplit(dataSet) # 根据下标取出标签
bestFeatLabel = labels[bestFeat] # 构建树
myTree = {bestFeatLabel:{}} # 删除取出过的标签,避免重复计算
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet] # 利用set去重
uniqueVals = set(featValues) for value in uniqueVals: # 复制所有的子标签,因为是引用类型,以避免改变原始标签数据
subLabels = labels[:] # 递归的构建树
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree
使用决策树分类
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr) # print 'featIndex %s' % (featIndex)
key = testVec[featIndex] # print 'key %s' % (key)
valueOfFeat = secondDict[key] if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel
dataSet, labels = createDataSet()
mytree = createTree(dataSet, labels[:]) #因为内部会删除labels里的值所以用这样copy一份 print mytree # {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}print classify(mytree, labels, [0,1])
no
决策树的存储
构造决策树是耗时的任务,即使处理很小的数据集。所以我们可以使用构造好的决策树。
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()def grabTree(filename):
import pickle
fr = open(filename) return pickle.load(fr)
优点
计算复杂度不高
输出结果易于理解
对中间值缺失不敏感
可以处理不相关特侦
缺点
可能产生过度匹配问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02