
基本概念
决策树是分类算法。
数据类型:数值型和标称型。因为构造算法只适用于标称型,所以数值型数据必须离散化。
工作原理
利用香浓熵找到信息增益最大的特征,按照信息增益最大的特征划分数据,如此反复,让无序的数据变的更加有序。使用ID3算法构建树结构。当传入一个新数据时,按照数据找到对应树节点,直到最后没有叶子节点时,完成分类。
样例
不浮出水面是否可以生存? 是否有脚蹼? 是否是鱼类?
通过“不浮出水面是否可以生存”和“是否有脚蹼”这两个特征来判断是否是鱼类。构建一个简单决策树,如果得到一个新的生物,可以用此来判断是否是鱼类。
样例代码
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing','flippers'] return dataSet, labels
香农熵公式
如果待分类的事务可能划分在多个分类之中,则符号Xi的信息定义为:
其中P(Xi)是选择该分类的概率
为了计算熵,需要计算所有类别所有可能值包含的信息期望值总和,公式为:
其中n是分类的数目
香农熵算法
def calcShannonEnt(dataSet):
# 选择该分类的概率 就是每个类型/总个数
# 总数,多少行数据
numEntries = len(dataSet)
labelCounts = {} # 取到的每个类型个数
for featVec in dataSet:
currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts: # 得到选择该分类的概率
prob = float(labelCounts[key])/numEntries # 按照公式
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
按照香农熵划分数据
除了需要测量信息熵,还需要划分数据集,度量花费数据集的熵,以便判断当前是否正确划分。 循环计算香浓熵和splitDataSet(),找到最好的特征划分方式。
def splitDataSet(dataSet, axis, value):
# 这个算法返回axis下标之外的列
retDataSet = [] for featVec in dataSet: if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet):
# 先取最后一列,用在标签结果:是鱼或不是鱼。
numFeatures = len(dataSet[0]) - 1
# 原始香浓熵
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
# 遍历所有的特征
for i in range(numFeatures): # 创建一个列表包含这个特征的所有值
featList = [example[i] for example in dataSet] # 利用set去重
uniqueVals = set(featList)
newEntropy = 0.0
# 计算该特征所包含类型的香浓熵之和
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet) # 得到信息增益
infoGain = baseEntropy - newEntropy # 取最大的信息增益,并记录下标
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i # 返回下标
return bestFeature
数据集需要满足一定的要求:
数据必须是一种有列表元素组成的列表。(二维数组)
所有列表元素必须有相同长度。
最后一列必须是当前实例的标签。
递归构建决策树
多数表决算法
如果数据集已经处理了所有属性,但是类标签依然不是唯一的,此时需要决定如何定义该叶子节点,在这种情况下,我们通常会采用多数表决决定该叶子节点。
import operator def majorityCnt(classList):
# 排序取出种类最多的
classCount={} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
构建树算法
def createTree(dataSet,labels):
# 取出结果
classList = [example[-1] for example in dataSet] # 如果结果里的第一个元素所代表的数据个数等于结果本身,说明没有其他分类了
if classList.count(classList[0]) == len(classList):
return classList[0] # 如果没有更多数据了,超过一个才有分类的意义
if len(dataSet[0]) == 1: # 多数表决,返回出现次数最多的
return majorityCnt(classList) # 选出最适合用于切分类型的下标
bestFeat = chooseBestFeatureToSplit(dataSet) # 根据下标取出标签
bestFeatLabel = labels[bestFeat] # 构建树
myTree = {bestFeatLabel:{}} # 删除取出过的标签,避免重复计算
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet] # 利用set去重
uniqueVals = set(featValues) for value in uniqueVals: # 复制所有的子标签,因为是引用类型,以避免改变原始标签数据
subLabels = labels[:] # 递归的构建树
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree
使用决策树分类
def classify(inputTree,featLabels,testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr) # print 'featIndex %s' % (featIndex)
key = testVec[featIndex] # print 'key %s' % (key)
valueOfFeat = secondDict[key] if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel
dataSet, labels = createDataSet()
mytree = createTree(dataSet, labels[:]) #因为内部会删除labels里的值所以用这样copy一份 print mytree # {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}print classify(mytree, labels, [0,1])
no
决策树的存储
构造决策树是耗时的任务,即使处理很小的数据集。所以我们可以使用构造好的决策树。
def storeTree(inputTree,filename):
import pickle
fw = open(filename,'w')
pickle.dump(inputTree,fw)
fw.close()def grabTree(filename):
import pickle
fr = open(filename) return pickle.load(fr)
优点
计算复杂度不高
输出结果易于理解
对中间值缺失不敏感
可以处理不相关特侦
缺点
可能产生过度匹配问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09