对于大数据,这些认识上的bug你必须要知道
虽然大数据的发展(包括新型的非结构化数据和数据分析工具)正影响着各行各业,但关于大数据也有一些误解。
误解一:算法能解决一切问题请输入标题
我把这个误解称为神奇的算法。有关大数据的早期报道造成了一种假象:要想打造智能城市和企业,只要将功能最强大的电脑凑在一起,让它们去分析手头上的非结构化数据,找出规律,其中的商业洞见自然会浮现出来。但事实上,数据分析并不是这样完成的。
除了机器的运算,要使大数据发生效用还需要许多人力专家的参与,这是因为:数据的质量和准确性相当重要。数据是怎样收集的?误差率如何?样本是否有代表性?如果进行比对,不同的数据库中数据格式是否相同?因此,数据处理中的许多工作还需要人工操作,其中的尺度计算机很难拿捏。
受编程人员的主观影响,数据分析的算法也会出现各种偏差。比如,某个程序可以帮助企业筛选出最佳应聘者的简历,但是基于过去招聘经历的筛选结果并不一定能满足公司未来所需要的技能。
更重要的是,管理者需要提出关于数据的对的问题。公司现阶段最关心的结果是什么?数据呈现的哪些模式可以直接为公司所用?算法在寻找答案方面越来越游刃有余,但关键还要知道寻找什么问题的答案,这需要人来提出恰当的问题。凯撒娱乐的首席商务官塔里克·肖卡特曾这样说:“如果仅关注数据,那你可能将一无所获。我总是提醒我的团队去思考,你想要回答什么问题。”
误解二:相关分析至上
发现一种模式往往是不够的。许多评论家一再指出,有了大数据,数据科学再也不需要考虑因果关系,只关注相关关系即可。这种观点的潜在逻辑在于,通过大数据分析得到的规律近乎事实,无须再依赖人们所认知的因果判断。
显然这种观点是不可取的。管理者需要分清简单的相关分析和因果分析之间的差异,以及这种差异什么时候重要,什么时候不重要,这一点非常关键。简而言之,如果仅仅是为了做预测,看数据之间的相关关系便已足够;但如果你想改变前提条件,就必须考虑因果关系。
回到斯特林格的例子——就是发现降低城市树木修剪预算会引发诉讼数量增加的那个检察官。如果树木修剪预算不是引发诉讼数量变化的真正原因,那么提高树木修剪预算的方案就不会奏效。在这个例子里,搞清因果关系是很重要的。
还有一个例子,试想你的广告策划团队发现,俄亥俄州的已婚女性对你们的头发护理产品广告更感兴趣,但是你显然不能通过鼓励俄亥俄州的女性结婚来增加产品销量(这将影响前提条件)。相反,发现这一规律后,你可能会考虑将产品定位于俄亥俄州的已婚女性群体。在这种情形下,仅需要知道相关关系就可以了。
误解三:大数据是万金油
有时候人们将大数据与数据战略混为一谈。在很多情况下,企业完全可以建立宝贵的数据库,将之应用到战略中,而不一定非要使用大数据。
数据并不一定非要“大”(非结构化)才有用。从结构化的数据中(如顾客的点击行为——顾客一般会点击网页的什么位置、什么时候下拉屏幕、停留了多长时间、是否将商品放入购物车等)照样可以得到许多有价值的信息。即使在像脸书这样为许多世界大型服务器集群提供大数据的企业,其工程师每天处理的大多数问题也可以在一台运转良好的电脑上完成。数据战略的关键在于为企业提供价值,有时候需要大数据,有时候并不需要。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20