
SPSS统计基础---频率的使用
频率过程提供有助于描述多种类型的变量的统计量和图形显示。频率过程是查看数据理想的开始位置。对于频率报告和条形图,可以用升序或降序排列不同的值,也可以按其频率对类别进行排序。当变量具有许多不相同的值时,可提取频率报告。您可以使用频率(缺省值)或百分比标记图表。
示例。按行业类型划分的公司客户的分布是什么?从输出中可以了解到客户的37.5%来自政府机构,24.9% 来自公司,28.1% 来自学术机构,9.4% 来自保健行业。对于连续的定量数据(例如,销售收入),您会了解到平均产品销售额为3,576 美元,标准差为1,078 美元。
统计量和图。频率计数、百分比、累计百分比、均值、中位数、众数、和、标准差、方差、范围、最小值和最大值、均值标准误、偏度和峰度(两者都带有标准误)、四分位数、用户指定的百分位数、条形图、饼图和直方图。
数据。使用数值代码或字符串以对分类变量进行编码(名义或序数级别度量)。
假设。特别对于已排序或未排序的类别的变量,表格和百分比可以提供对所有分布中的数据都有用的描述。大多数可选摘要统计量(如均值和标准差)是基于正态理论的,它们适用于对称分布的定量变量。稳健统计量(如中位数、四分位数和百分位数)适合于可能符合或可能不符合正态假设的定量变量。
获取频率表
E 从菜单中选择:
分析> 描述统计> 频率...
选择一个或多个分类变量或定量变量。
根据需要,您可以:
单击统计量以获得定量变量的描述统计。
单击结果显示顺序的格式。
频率统计量
百分位值。一个定量变量的值,其将排序过的数据分组,以使某个百分比在上而另外一个百分比在下。四分位数(第25、50、75 个百分位数)将观察值分为四个大小相等的组。如果您想让组数不等于4,请选择n 个相等组的割点。您也可指定单个百分位数(例如,第95 个百分点,有95% 的观察值大于该值)。
集中趋势。描述分布位置的统计量,包括均值、中位数、众数和所有值的总和。
均值. 集中趋势的测量。算术平均,总和除以个案个数。
中位数. 第50 个百分位,大于该值和小于该值的个案数各占一半。如果个案个
数为偶数,则中位数是个案在以升序或降序排列的情况下最中间的两个个案的平均。中位数是集中趋势的测量,但对于远离中心的值不敏感(这与均值不同,均值容易受到少数多个非常大或非常小的值的影响)。
众数. 最频繁出现的值。如果出现频率最高的值不止一个,则每一个都是一个众
数。“频率”过程仅报告此类多个众数中最小的那个。
总和. 所有带有非缺失值的个案的值的合计或总计。
离散程度。测量数据中变异和展开的统计量,包括标准差、方差、范围、最小值、最大值和均值标准误。
标准差. 对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一倍标准差范围内,95% 的个案在均值的两倍标准差范围内。例如,在正态分布中,如果平均年龄为45,标准差为10,则95% 的个案将处于25 到65 之间。
方差. 对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方。
全距. 数值变量最大值和最小值之间的差;最大值减去最小值。
最小值. 数值变量的最小值。
最大值. 数值变量的最大值。
均值的标准误. 取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于-2 或大于+2,则可以断定两个值不同)。
分布。偏度和峰度是描述分布形状和对称性的统计量。这些统计量与其标准误一起显示。
偏度. 分布的不对称性度量。正态分布是对称的,偏度值为0。具有显著正偏度值的分布有很长的右尾。具有显著的负偏度的分布有很长的左尾。作为一个指导,当偏度值超过标准误的两倍时,则认为不具有对称性。
峰度. 观察值聚集在中点周围的程度的测量。对于正态分布,峰度统计量的值为
0。正峰度值表示相对于正态分布,观察值在分布中心的聚集更多,同时尾部更薄,直到分布极值。在这一点,leptokurtic 分布的尾部比正态分布的尾部要厚。负峰度值表示相对于正态分布,观察值聚集得少并且尾部较厚,直到分布极值。在这一点,platykurtic 分布的尾部比正态分布的尾部要薄。
值是组中点。如果您的数据中的值是组中点(例如,所有年龄在30 多岁的人都被编码为35),则选择此选项以估计原始未分组的数据的中位数和百分位数。
频率图
图表类型。饼图显示各部分对整体的贡献。饼图的每个分区对应于由单个分组变量定义的组。条形图将不同值或不同类别的计数作为单独的条显示,使您可以直观地比较各个类别。直方图也有条,但它们沿着相等的区间刻度进行绘制。每个条的高度是定量变量在该区间内的值的计数。直方图显示分布的形状、中心和分布。叠加在直方图上的正态曲线有助于您判断数据是否为正态分布。
图表值。对于条形图,可以按频率计数或百分比标记刻度轴。
频率格式
排序方式。可根据数据中的实际值或根据这些值的计数(出现的频率)以升序或降序排列频率表。但是,如果您请求直方图或百分位数,则频率假定变量是定量数据并以升序显示其值。
多个变量。如果您生成多个变量的统计表,您可在单个表中显示所有变量(比较变量),或显示每个变量的独立统计量表(按变量组织输出)。排除超过n 个类别的表。此选项防止显示具有超过指定数目的值的表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03