
R的变量类型和常用函数
一、R的变量类型
也可以说是数据存储方式,有:
Vector: 一维阵列
Matrics: 二维阵列,其中所有元素是同一数据类型。
factor: 种类变量,可使用levels函数来规定种类变量的各级别的名称。例如:levels(factor_vector) <- c("name1", "name2",...)
Dataframe:二维阵列,每一列中的元素是同一数据类型,不同列的数据类型可以不同。
List : 一个List中可包含多个类型对象,包括List本身。
二、常用函数
seq(from,to,by): Generate sequences, by specifying the from, to and by arguments.
rep(): Replicate elements of vectors and lists.
sort(): Sort a vector in ascending order. Works on numerics, but also on character strings and logicals.
rev(): Reverse the elements in a data structures for which reversal is defined.
str(): Display the structure of any R object.
append(): Merge vectors or lists.
is.*(): Check for the class of an R object.
as.*(): Convert an R object from one class to another.
unlist(): Flatten (possibly embedded) lists to produce a vector.
三、apply函数家族
通过apply函数对结构化的数据实现某些操作,对向量(vector)或者列表(list)按照元素或元素构成的子集合进行迭代。个人认为相当于一种批处理操作。
lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
lapply和sapply将一个函数应用于一个list或者vector, 区别在于lapply以列表(list)形式返回结果,而sapply将输出结果简化为一个向量或者矩阵。
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
vapply类似于sapply,但是提供了参数FUN.VALUE用以指明返回值的形式,即返回值可以有预定义类型,因此更安全。
四、正则表达式(regular expression)
正则表达式不是R的专属内容,用于描述/匹配一个文本集合的表达式。通常被用来检索、替换那些符合某个模式(规则)的文本。
1.元字符(metacharacter)
一些特殊的字符在正则表达式中不在用来描述它自身,它们在正则表达式中已经被“转义”,这些字符称为元字符。
常用元字符如下:
2、字符串匹配查询函数
查询功能的函数主要有grep、grepl, 主要区别在于其输出结果格式不同,共同点是都包含正则表达式pattern和文本X这两个参数。
grepl(pattern, x) which returns TRUE when a pattern is found in the corresponding character string.
grep(pattern, x) which returns a vector of indices of the character strings that contains the pattern.
grep仅返回匹配项的下标,而grepl返回所有的查询结果,并用逻辑向量表示有没有找到匹配
3、字符串替换函数
模式替换函数主要有sub和gsub,二者的区别在于sub函数只替换文本中第一个匹配的元素,gsub则针对X中所有匹配元素。
sub(pattern, replacement, x)
gsub(pattern, replacement, x)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10