R的变量类型和常用函数
一、R的变量类型
也可以说是数据存储方式,有:
Vector: 一维阵列
Matrics: 二维阵列,其中所有元素是同一数据类型。
factor: 种类变量,可使用levels函数来规定种类变量的各级别的名称。例如:levels(factor_vector) <- c("name1", "name2",...)
Dataframe:二维阵列,每一列中的元素是同一数据类型,不同列的数据类型可以不同。
List : 一个List中可包含多个类型对象,包括List本身。
二、常用函数
seq(from,to,by): Generate sequences, by specifying the from, to and by arguments.
rep(): Replicate elements of vectors and lists.
sort(): Sort a vector in ascending order. Works on numerics, but also on character strings and logicals.
rev(): Reverse the elements in a data structures for which reversal is defined.
str(): Display the structure of any R object.
append(): Merge vectors or lists.
is.*(): Check for the class of an R object.
as.*(): Convert an R object from one class to another.
unlist(): Flatten (possibly embedded) lists to produce a vector.
三、apply函数家族
通过apply函数对结构化的数据实现某些操作,对向量(vector)或者列表(list)按照元素或元素构成的子集合进行迭代。个人认为相当于一种批处理操作。
lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
lapply和sapply将一个函数应用于一个list或者vector, 区别在于lapply以列表(list)形式返回结果,而sapply将输出结果简化为一个向量或者矩阵。
vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)
vapply类似于sapply,但是提供了参数FUN.VALUE用以指明返回值的形式,即返回值可以有预定义类型,因此更安全。
四、正则表达式(regular expression)
正则表达式不是R的专属内容,用于描述/匹配一个文本集合的表达式。通常被用来检索、替换那些符合某个模式(规则)的文本。
1.元字符(metacharacter)
一些特殊的字符在正则表达式中不在用来描述它自身,它们在正则表达式中已经被“转义”,这些字符称为元字符。
常用元字符如下:
2、字符串匹配查询函数
查询功能的函数主要有grep、grepl, 主要区别在于其输出结果格式不同,共同点是都包含正则表达式pattern和文本X这两个参数。
grepl(pattern, x) which returns TRUE when a pattern is found in the corresponding character string.
grep(pattern, x) which returns a vector of indices of the character strings that contains the pattern.
grep仅返回匹配项的下标,而grepl返回所有的查询结果,并用逻辑向量表示有没有找到匹配
3、字符串替换函数
模式替换函数主要有sub和gsub,二者的区别在于sub函数只替换文本中第一个匹配的元素,gsub则针对X中所有匹配元素。
sub(pattern, replacement, x)
gsub(pattern, replacement, x)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29