大数据建设框架成为企业实现精细化经营的重要途径
随着汽车市场逐步饱和,竞争加剧,车企希望通过拥抱大数据实现精细化经营,领先一步。但是大数据化的过程并非一蹴而就,也不是简单的大数据技术选择,更应该看成一个企业级系统工程。本文结合大数据项目实践和行业理解,着重阐述了如何系统看待大数据建设和关键问题解决思路。
背景
随着汽车普及的不断深入,中国汽车市场逐渐饱和增速放缓,我国车企已迈入了竞争运营的阶段。随着近年大数据的兴起,越来越多的车企也选择投身大数据潮流,希望通过拥抱大数据,实现更加精细化的业务运营,营销模式变化,乃至企业转型,提高自身运营竞争力。如国际顶级车企大众、宝马、奔驰,还有国内车企长城、吉利等都纷纷开启了自己的大数据之路(图1)。
图1 车企大数据典型案例
然而,在大数据化进程中,车企却发现演变过程并不是那么一帆风顺,在和车企交流中,往往能听到业务部门的抱怨:
1.数据质量怎么这么差,用户姓名一看就是随便输入的,手机号码居然只有9位;
2.销量统计错了,把提车数统计到实销数里了;
3.你做的分析功能我们不需要,对了,我们库存预测到底能不能做。
信息化部门却会感觉到困惑:
1. 我们已经采用先进的大数据技术平台了,但是该做些什么业务;
2. 我们哪里知道业务部门对应计算口径是什么,业务需求不清楚;
3. 你这个业务需求,我们心里没数。
由此可见,如何构建一个高效大数据平台,不仅仅是简单的IT系统建设,更不是简单购买了大数据平台就能实现大数据分析。企业大数据化更应该是一个系统,要贯穿管理-业务-系统-数据,逐步规划,逐步建设,而不是一蹴而就。因此,基于大数据思考、实践模式,联想总结出企业大数据建设框架(图2),针对其中关键问题提出思考和分析。
图2.企业大数据建设框架
大数据之“本”:多源之水,夯实数据仓库
对于成熟的车企而言,要利用大数据产生价值,必然要构建丰富的数据体系才能发挥出大数据平台的价值,否则将成为无源之水,无本之木。一般情况下,车企需要围绕四个主要因素构建数据源才能满足整体业务需求:主机厂、渠道、客户、车。
那么车企有哪些数据呢?通常大部分车企的传统数据来源已经有了相对成熟的生产体系,包括销售领域的分销商管理系统(DMS),以及经销商使用的CRM、客服中心(Callcenter)、生产管理系统,质量管理系统(QIS)等等,这几类数据可以满足日常主机厂对于自身的运营分析、产品分析以及对渠道运营分析,但是,仍然存在如下问题:
1.客户数据匮乏,相比电信、金融行业,车企行业客户触点过少,而周期又过长,这导致其无法构建出多维的客户数据。
2.产品质量数据往往通过售后服务来反馈,因此进行被动故障排查的难度较高,如此一来,车企无法做到预测性故障的分析。
因此,为了发挥大数据的价值,车企就需要增加新的数据源,用来满足业务分析对数据多样化的需求
一、车联网系统:
目前,越来越多的主机厂考虑部署或者已经部署车联网系统,从大数据角度来说,车企通过车联网系统可以有效补充用户日常数据缺失,以ADAS系统为例,可以捕获如下数据:
1.用户驾驶行为数据:用户每次驾驶里程、转向习惯、行驶速度、是否有疲劳驾驶等,均可以有效帮助客户来搭建画像建模。
2.产品参数实时获取:不同零部件的关键运营指标,如转速、温度、电子指标等,从而为精细化产品质量预测和分析提供了基础。
二、网络舆情信息:
网络已经是用户信息传播的主要渠道,相比主机厂传统的传播方式,网络渠道可以更早、更全面的反映用户对主机厂的相关信息,通过部署自有网络爬虫系统或者购买第三方的SAAS服务,可以针对重点门户、知名行业网站、论坛、电商平台等。
1.通过爬虫系统可以有效捕获网络新闻、论坛帖子、用户评论等网络信息
2.基于大数据技术处理,车企可以通过网络信息进行市场营销、品牌影响力推广以及对用户习惯、产品质量等内容的分析。以品牌为例,车企可以完成对品牌日常热度、口碑倾向等内容的分析。
三、第三方外部数据:
1.行业性数据:通过乘联会等行业组织的数据引入,可以有效解决市场趋势分析的数据引入。
2.第三方用户标签数据:在和第三方的数据合作之中,车企往往希望能得到用户级的数据交换,但考虑到第三方数据匹配成功率不足的问题,就需要车企构建统一的用户标签体系和用户多ID体系。此外,更为可行的做法是充分利用第三方的做好用户画像分析数据,优先完善用户群统计数据。
添加该三项数据源的归类,车企才能真正实现现阶段对精细化经营的补充,让整个车企的数据源架构升维到更加实用、高效的层面,这也是未来车企发展的重要途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29