
大数据建设框架成为企业实现精细化经营的重要途径
随着汽车市场逐步饱和,竞争加剧,车企希望通过拥抱大数据实现精细化经营,领先一步。但是大数据化的过程并非一蹴而就,也不是简单的大数据技术选择,更应该看成一个企业级系统工程。本文结合大数据项目实践和行业理解,着重阐述了如何系统看待大数据建设和关键问题解决思路。
背景
随着汽车普及的不断深入,中国汽车市场逐渐饱和增速放缓,我国车企已迈入了竞争运营的阶段。随着近年大数据的兴起,越来越多的车企也选择投身大数据潮流,希望通过拥抱大数据,实现更加精细化的业务运营,营销模式变化,乃至企业转型,提高自身运营竞争力。如国际顶级车企大众、宝马、奔驰,还有国内车企长城、吉利等都纷纷开启了自己的大数据之路(图1)。
图1 车企大数据典型案例
然而,在大数据化进程中,车企却发现演变过程并不是那么一帆风顺,在和车企交流中,往往能听到业务部门的抱怨:
1.数据质量怎么这么差,用户姓名一看就是随便输入的,手机号码居然只有9位;
2.销量统计错了,把提车数统计到实销数里了;
3.你做的分析功能我们不需要,对了,我们库存预测到底能不能做。
信息化部门却会感觉到困惑:
1. 我们已经采用先进的大数据技术平台了,但是该做些什么业务;
2. 我们哪里知道业务部门对应计算口径是什么,业务需求不清楚;
3. 你这个业务需求,我们心里没数。
由此可见,如何构建一个高效大数据平台,不仅仅是简单的IT系统建设,更不是简单购买了大数据平台就能实现大数据分析。企业大数据化更应该是一个系统,要贯穿管理-业务-系统-数据,逐步规划,逐步建设,而不是一蹴而就。因此,基于大数据思考、实践模式,联想总结出企业大数据建设框架(图2),针对其中关键问题提出思考和分析。
图2.企业大数据建设框架
大数据之“本”:多源之水,夯实数据仓库
对于成熟的车企而言,要利用大数据产生价值,必然要构建丰富的数据体系才能发挥出大数据平台的价值,否则将成为无源之水,无本之木。一般情况下,车企需要围绕四个主要因素构建数据源才能满足整体业务需求:主机厂、渠道、客户、车。
那么车企有哪些数据呢?通常大部分车企的传统数据来源已经有了相对成熟的生产体系,包括销售领域的分销商管理系统(DMS),以及经销商使用的CRM、客服中心(Callcenter)、生产管理系统,质量管理系统(QIS)等等,这几类数据可以满足日常主机厂对于自身的运营分析、产品分析以及对渠道运营分析,但是,仍然存在如下问题:
1.客户数据匮乏,相比电信、金融行业,车企行业客户触点过少,而周期又过长,这导致其无法构建出多维的客户数据。
2.产品质量数据往往通过售后服务来反馈,因此进行被动故障排查的难度较高,如此一来,车企无法做到预测性故障的分析。
因此,为了发挥大数据的价值,车企就需要增加新的数据源,用来满足业务分析对数据多样化的需求
一、车联网系统:
目前,越来越多的主机厂考虑部署或者已经部署车联网系统,从大数据角度来说,车企通过车联网系统可以有效补充用户日常数据缺失,以ADAS系统为例,可以捕获如下数据:
1.用户驾驶行为数据:用户每次驾驶里程、转向习惯、行驶速度、是否有疲劳驾驶等,均可以有效帮助客户来搭建画像建模。
2.产品参数实时获取:不同零部件的关键运营指标,如转速、温度、电子指标等,从而为精细化产品质量预测和分析提供了基础。
二、网络舆情信息:
网络已经是用户信息传播的主要渠道,相比主机厂传统的传播方式,网络渠道可以更早、更全面的反映用户对主机厂的相关信息,通过部署自有网络爬虫系统或者购买第三方的SAAS服务,可以针对重点门户、知名行业网站、论坛、电商平台等。
1.通过爬虫系统可以有效捕获网络新闻、论坛帖子、用户评论等网络信息
2.基于大数据技术处理,车企可以通过网络信息进行市场营销、品牌影响力推广以及对用户习惯、产品质量等内容的分析。以品牌为例,车企可以完成对品牌日常热度、口碑倾向等内容的分析。
三、第三方外部数据:
1.行业性数据:通过乘联会等行业组织的数据引入,可以有效解决市场趋势分析的数据引入。
2.第三方用户标签数据:在和第三方的数据合作之中,车企往往希望能得到用户级的数据交换,但考虑到第三方数据匹配成功率不足的问题,就需要车企构建统一的用户标签体系和用户多ID体系。此外,更为可行的做法是充分利用第三方的做好用户画像分析数据,优先完善用户群统计数据。
添加该三项数据源的归类,车企才能真正实现现阶段对精细化经营的补充,让整个车企的数据源架构升维到更加实用、高效的层面,这也是未来车企发展的重要途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02