京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas信用评分之不用检查异常值的最优分组
今天的更新比以往晚了一天,假期综合症第一天,我到现在已经喝了第三杯咖啡,实现上周的预告,这种更新一个不用检查异常值的数值变量最优分组。其实这代码我本来不想拿出来,我觉得这代码估计能卖点钱,但是介于我是一个不敢赚你们钱的博主,所以还是拿出来吧。本篇文章最后有惊喜。
首先我们先说下,这的代码的思路,为什么不用检查异常值呢。其实是这样子的,我把等量分组和最优分组结合起来了,即保证了最小组的数量也保证了不要因为某些异常值导致分组的过拟合。也少去人工的手动分组。
譬如,有一个年龄的分组,那么我会先用等量分组先分成20组,这时候注意了,就是前后会有极小极大值,就算是异常值,这时候因为你分成了20组,所以极小值以及极大值就被包含在第一组以及最后一组中,以1和20代替了。我相信我这么说你应该可以理解。
至于这等量分组的代码用的是proc rank过程去分的,具体可以参考:proc rank过程
等量分组的代码在这篇文章中:sas信用评分之手动对数值变量分组
然后将产出的结果映射到原数据中再丢进去最优分组,最优分组的代码在这篇文章中:sas信用评分之第二步变量筛选。再丢进去最优分组的代码的时候,需要将等量分组映射到原数据集中,映射代码如下:
/*这个宏是在%data_split后面的执行的,所以这里需要的数据集有%data_split中产生的以"_iv"为后缀的,"_RANK"的数据集*/
data:填入原数据集
id:填入主键
ddvar:因变量
%macro map(data,id,ddvar);
proc sql noprint;
select col_name into: varlist separated by ' ' from &data._IV;
%let nVar=&SQLOBS;
quit;/*从细分后的字典表中得到待填充的变量*/
%put &varlist.;
data &data._woe;
set &data.(keep=&id. &ddvar.);
run;/*首先获取相应的识别标识及Y值*/
data &data._1(drop=i);
set &data.;
array arr1{*} _NUMERIC_;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
arr1(i)=-999;
end;
end;
run;
%do i=1 %to &nVar;
%let var = %scan(&varlist, &i);
data V ;
set &data._1(keep=&id. &var.);
run;/*找出待填充变量的取值,将空值填充为1000000000*/
data rank;
set &data._RANK;
where col_name="&var.";
run;/*找出待填充变量的配置表相关信息*/
proc sql noprint;
create table WOE AS
select I.&id., B.clus as &var.
from V AS I
left join rank AS B
ON I.&var. > b.low AND I.&var. <= B.up
;
quit;/*通过上、下界进行填充*/
proc sort data=WOE;
by &id.;
run;
proc sort data=&data._woe;
by &id.;
run;
data &data._woe;
merge &data._woe woe;
by &id.;
run;/*合并所有的变量woe*/
%end;
%mend;
我希望你们真心想用这部分代码分组的,你们要自己看懂代码,学习这种东西不是问出来,都是要自己动手琢磨的。我自认为我不是一个聪明的人,但我是喜欢的东西,我会很乐于去探索,所以你也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22