热线电话:13121318867

登录
首页精彩阅读R语言解读多元线性回归模型
R语言解读多元线性回归模型
2017-05-31
收藏

R语言解读多元线性回归模型

在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论。这其中可能包括了因为更好的家庭条件,所以有了更好的教育;因为在一线城市发展,所以有了更好的工作机会;所处的行业赶上了大的经济上行周期等。要想解读这些规律,是复杂的、多维度的,多元回归分析方法更适合解读生活的规律。

由于本文为非统计的专业文章,所以当出现与教课书不符的描述,请以教课书为准。本文力求用简化的语言,来介绍多元线性回归的知识,同时配合R语言的实现。

1. 多元线性回归介绍

对比一元线性回归,多元线性回归是用来确定2个或2个以上变量间关系的统计分析方法。多元线性回归的基本的分析方法与一元线性回归方法是类似的,我们首先需要对选取多元数据集并定义数学模型,然后进行参数估计,对估计出来的参数进行显著性检验,残差分析,异常点检测,最后确定回归方程进行模型预测。

由于多元回归方程有多个自变量,区别于一元回归方程,有一项很重要的操作就是自变量的优化,挑选出相关性最显著的自变量,同时去除不显著的自变量。在R语言中,有很方便地用于优化函数,可以很好的帮助我们来改进回归模型。

下面就开始多元线性回归的建模过程。

2. 多元线性回归建模

做过商品期货研究的人,都知道黑色系品种是具有产业链上下游的关系。铁矿石是炼钢的原材料,焦煤和焦炭是炼钢的能源资源,热卷即热轧卷板是以板坯为原料经加热后制成的钢板,螺纹钢是表面带肋的钢筋。

由于有产业链的关系,假设我们想要预测螺纹钢的价格,那么影响螺纹钢价格的因素可以会涉及到原材料,能源资源和同类材料等。比如,铁矿石价格如果上涨,螺纹钢就应该要涨价了。

2.1 数据集和数学模型

先从数据开始介绍,这次的数据集,我选择的期货黑色系的品种的商品期货,包括了大连期货交易所的 焦煤(JM),焦炭(J),铁矿石(I),上海期货交易所的 螺纹钢(RU) 和 热卷(HC)。

数据集为2016年3月15日,当日白天开盘的交易数据,为黑色系的5个期货合约的分钟线的价格数据。

数据集包括有6列:索引, 为时间

x1, 为焦炭(j1605)合约的1分钟线的报价数据

x2, 为焦煤(jm1605)合约的1分钟线的报价数据

x3, 为铁矿石(i1605)合约的1分钟线的报价数

x4, 为热卷(hc1605)合约的1分钟线的报价数据

y, 为螺纹钢(rb1605)合约的1分钟线的报价数据

假设螺纹钢的价格与其他4个商品的价格有线性关系,那么我们建立以螺纹钢为因变量,以焦煤、焦炭、铁矿石和热卷的为自变量的多元线性回归模型。用公式表示为:

y,为因变量,螺纹钢

x1,为自变量,焦煤

x2,为自变量,焦炭x3,为自变量,铁矿石

x4,为自变量,热卷

a,为截距

b,c,d,e,为自变量系数


ε, 为残差,是其他一切不确定因素影响的总和,其值不可观测。假定ε服从正态分布N(0,σ^2)。

通过对多元线性回归模型的数学定义,接下来让我们利用数据集做多元回归模型的参数估计。

2.2. 回归参数估计

上面公式中,回归参数 a, b, c, d,e都是我们不知道的,参数估计就是通过数据来估计出这些参数,从而确定自变量和因变量之前的关系。我们的目标是要计算出一条直线,使直线上每个点的Y值和实际数据的Y值之差的平方和最小,即(Y1实际-Y1预测)^2+(Y2实际-Y2预测)^2+ …… +(Yn实际-Yn预测)^2 的值最小。参数估计时,我们只考虑Y随X自变量的线性变化的部分,而残差ε是不可观测的,参数估计法并不需要考虑残差。

类似于一元线性回归,我们用R语言来实现对数据的回归模型的参数估计,用lm()函数来实现多元线性回归的建模过程。

这样我们就得到了y和x关系的方程。

2.3. 回归方程的显著性检验

参考一元线性回归的显著性检验,多元线性回归的显著性检验,同样是需要经过 T检验,F检验,和R^2(R平方)相关系统检验。在R语言中这三种检验的方法都已被实现,我们只需要把结果解读,我们可以summary()函数来提取模型的计算结果。

T检验:所自变量都是非常显著***

F检验:同样是非常显著,p-value < 2.2e-16

调整后的R^2:相关性非常强为0.972

最后,我们通过的回归参数的检验与回归方程的检验,得到最后多元线性回归方程为:

2.4 残差分析和异常点检测

在得到的回归模型进行显著性检验后,还要在做残差分析(预测值和实际值之间的差),检验模型的正确性,残差必须服从正态分布N(0,σ^2)。直接用plot()函数生成4种用于模型诊断的图形,进行直观地分析。

残差和拟合值(左上),残差和拟合值之间数据点均匀分布在y=0两侧,呈现出随机的分布,红色线呈现出一条平稳的曲线并没有明显的形状特征

残差QQ图(右上),数据点按对角直线排列,趋于一条直线,并被对角直接穿过,直观上符合正态分布

标准化残差平方根和拟合值(左下),数据点均匀分布在y=0两侧,呈现出随机的分布,红色线呈现出一条平稳的曲线并没有明显的形状特征

标准化残差和杠杆值(右下),没有出现红色的等高线,则说明数据中没有特别影响回归结果的异常点。

结论,没有明显的异常点,残差符合假设条件。

2.5. 模型预测

我们得到了多元线性回归方程的公式,就可以对数据进行预测了。我们可以用R语言的predict()函数来计算预测值y0和相应的预测区间,并把实际值和预测值一起可视化化展示。

图例说明:

y, 实际价格,红色线

fit, 预测价格,绿色线

lwr,预测最低价,蓝色线

upr,预测最高价,紫色线

从图中看出,实际价格y和预测价格fit,在大多数的时候都是很贴近的。我们的一个模型就训练好了!

3. 模型优化

上文中,我们已经很顺利的发现了一个非常不错的模型。如果要进行模型优化,可以用R语言中update()函数进行模型的调整。我们首先检查一下每个自变量x1,x2,x3,x4和因变量y之间的关系。

从图中,我们可以发现x2与Y的关系,可能是最偏离线性的。那么,我们尝试对多元线性回归模型进行调整,从原模型中去掉x2变量。

当把自变量x2去掉后,自变量x3的T检验反而变大了,同时Adjusted R-squared变小了,所以我们这次调整是有问题的。

如果通过生产和原材料的内在逻辑分析,焦煤与焦炭属于上下游关系。焦煤是生产焦炭的一种原材料,焦炭是焦煤与其他炼焦煤经过配煤焦化形成的产品,一般生产 1 吨焦炭需要1.33 吨炼焦煤,其中焦煤至少占 30% 。

我们把焦煤 和 焦炭的关系改变一下,增加x1*x2的关系匹配到模型,看看效果。

从结果中发现,增加了x1*x2列后,原来的x1,x2和Intercept的T检验都不显著。继续调整模型,从模型中去掉x1,x2两个自变量。

从调整后的结果来看,效果还不错。不过,也并没有比最初的模型有所提高。

对于模型调整的过程,如果我们手动调整测试时,一般都会基于业务知识来操作。如果是按照数据指标来计算,我们可以用R语言中提供的逐步回归的优化方法,通过AIC指标来判断是否需要参数优化。

通过计算AIC指标,lm1的模型AIC最小时为324.51,每次去掉一个自变量都会让AIC的值变大,所以我们还是不调整比较好。

对刚才的lm3模型做逐步回归的模型调整。

通过AIC的判断,去掉X1*X2项后AIC最小,最后的检验结果告诉我们,还是原初的模型是最好的。

4. 案例:黑色系期货日K线数据验证

最后,我们用上面5个期货合约的日K线数据测试一下,找到多元回归关系。

数据集的基本统计信息。

对于日K线数据,黑色系的5个品种,同样具有非常强的相关关系,那么我们就可以把这个结论应用到实际的交易中了。

本文通过多元回归统计分析方法,介绍多元回归在金融市场的基本应用。我们通过建立因变量和多个自变量的模型,从而发现生活中更复杂的规律,并建立有效的验证指标。


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询