R语言-如何处理违背回归假设的问题
我们已经花费了不少篇幅来学习回归诊断,你可能会问:“如果发现了问题,那么能做些什么呢?”有四种方法可以处理违背回归假设的问题:
删除观测点;
变量变换;
添加或删除变量;
使用其他回归方法。
下面让我们依次学习。
8.5.1 删除观测点
删除离群点通常可以提高数据集对于正态假设的拟合度,而强影响点会干扰结果,通常也会被删除。删除最大的离群点或者强影响点后,模型需要重新拟合。若离群点或强影响点仍然存在,重复以上过程直至获得比较满意的拟合。
不过,我对删除观测点持谨慎态度。若是因为数据记录错误,或是没有遵守规程,或是受试对象误解了指导说明,这种情况下的点可以判断为离群点,删除它们是十分合理的。
不过在其他情况下,所收集数据中的异常点可能是最有趣的东西。发掘为何该观测点不同于其他点,有助于你更深刻地理解研究的主题,或者发现其他你可能没有想过的问题。我们一些最伟大的进步正是源自于意外地发现了那些不符合我们先验认知的东西(抱歉,我说得夸张了)。
8.5.2 变量变换
当模型不符合正态性、线性或者同方差性假设时,一个或多个变量的变换通常可以改善或调整模型效果。变换多用Y λ 替代Y, λ 的常见值和解释见表8-5。
若Y是比例数,通常使用logit变换[ln (Y/1-Y )]。
当模型违反了正态假设时,通常可以对响应变量尝试某种变换。 car包中的powerTransform()函数通过λ 的最大似然估计来正态化变量X λ。代码清单8-10是对数据states的应用。
结果表明,你可以用Murder0.6来正态化变量Murder。由于0.6很接近0.5,你可以尝试用平方根变换来提高模型正态性的符合程度。但在本例中, λ= 1的假设也无法拒绝(p=0.145),因此没有强有力的证据表明本例需要变量变换,这与图8-9的Q-Q图结果一致。
当违反了线性假设时,对预测变量进行变换常常会比较有用。 car包中的boxTidwell()函数通过获得预测变量幂数的最大似然估计来改善线性关系。下面的例子为用州的人口和文盲率来预测谋杀率,对模型进行了Box-Tidwell变换:
结果显示,使用变换Population0.87和Illiteracy1.36能够大大改善线性关系。但是对Population(p=0.75)和Illiteracy(p=0.54)的计分检验又表明变量并不需要变换。这些结果与图8-11的成分残差图是一致的。
响应变量变换还能改善异方差性(误差方差非恒定)。在代码清单8-7中,你可以看到car包中spreadLevelPlot()函数提供的幂次变换应用,不过, states例子满足了方差不变性,不需要进行变量变换。
谨慎对待变量变换
统计学中流传着一个很老的笑话:如果你不能证明A,那就证明B,假装它就是A。(对于统计学家来说,这很滑稽好笑。)此处引申的意思是,如果你变换了变量,你的解释必须基于变换后的变量,而不是初始变量。如果变换得有意义,比如收入的对数变换、距离的逆变换,解释起来就会容易得多。但是若变换得没有意义,你就应该避免这样做。比如,你怎样解释自杀意念的频率与抑郁程度的立方根间的关系呢?
8.5.3 增删变量
改变模型的变量将会影响模型的拟合度。有时,添加一个重要变量可以解决我们已经讨论过的许多问题,删除一个冗余变量也能达到同样的效果。删除变量在处理多重共线性时是一种非常重要的方法。如果你仅仅是做预测,那么多重共线性并不构成问题,但是如果还要对每个预测变量进行解释,那么就必须解决这个问题。最常见的方法就是删除某个存在多重共线性的变量(某个变量 vif
2 ) 。另外一个可用的方法便是岭回归——多元回归的变体,专门用来处理多重共线性问题。
8.5.4 尝试其他方法
正如刚才提到的,处理多重共线性的一种方法是拟合一种不同类型的模型(本例中是岭回归)。其实,如果存在离群点和/或强影响点,可以使用稳健回归模型替代OLS回归。如果违背了正态性假设,可以使用非参数回归模型。如果存在显著的非线性,能尝试非线性回归模型。如果违背了误差独立性假设,还能用那些专门研究误差结构的模型,比如时间序列模型或者多层次回归模型。最后,你还能转向广泛应用的广义线性模型,它能适用于许多OLS回归假设不成立的情况。在第13章中,我们将会介绍其中一些方法。至于什么时候需要提高OLS回归拟合度,什么时候需要换一种方法,这些判断是很复杂的,需要依靠你对主题知识的理解,判断出哪个模型提供最佳结果。既然提到最佳结果,现在我们就先讨论一下回归模型中的预测变量选择问题。
8.6 选择“最佳”的回归模型
尝试获取一个回归方程时,实际上你就面对着从众多可能的模型中做选择的问题。是不是所有的变量都要包括?抑或去掉那个对预测贡献不显著的变量?还是需要添加多项式项和/或交互项来提高拟合度?最终回归模型的选择总是会涉及预测精度(模型尽可能地拟合数据)与模型简洁度(一个简单且能复制的模型)的调和问题。如果有两个几乎相同预测精度的模型,你肯定喜欢简单的那个。本节讨论的问题,就是如何在候选模型中进行筛选。注意,“最佳”是打了引号的,因为没有做评价的唯一标准,最终的决定需要调查者的评判。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26