
SAS—计算K-S值及画图
近来,时于夜半下雨,也常在梦里被雨扰醒。究其原因,也是因为近来工作无趣,本身也只喜欢写写SAS或Python代码,做模型,可近来却连数据权限都没有,万灰俱灭。雨声轻轻,却也容易愁闷得睡不着。想着要去外包,却因自己的犹豫不决也没有去成。
好了,不说废话了。昨天有人在微信上问KS的计算方式。今天介绍一下KS值吧。
先看一段程序:
data logistic;
input accident age vision drive;
datalines;
1 17 1 1
1 44 0 0
1 48 1 0
1 55 0 0
1 75 1 1
0 35 0 1
0 42 1 1
0 57 0 0
0 28 0 1
0 20 0 1
0 38 1 0
0 45 0 1
0 47 1 1
0 52 0 0
0 55 0 1
1 68 1 0
1 18 1 0
1 68 0 0
1 48 1 1
1 17 0 0
1 70 1 1
1 72 1 0
1 35 0 1
1 19 1 0
1 62 1 0
0 39 1 1
0 40 1 1
0 55 0 0
0 68 0 1
0 25 1 0
0 17 0 0
0 45 0 1
0 44 0 1
0 67 0 0
0 55 0 1
1 61 1 0
1 19 1 0
1 69 0 0
1 23 1 1
1 19 0 0
1 72 1 1
1 74 1 0
1 31 0 1
1 16 1 0
1 61 1 0
;
proc logistic data=logistic outest=model;
model accident(event='1')=age vision drive/selection=stepwise
sle=0.05 sls=0.05 outroc=roc;
output out= pred p=p1 ;
run;
proc npar1way data=pred noprint;
class accident;
var p1;
output out=ks;
run;
以上是一段常规的计算KS值。
首先要了解什么是KS值,K-S值(kolmogorov-smirnov curve)将总体进行n等分组并按照违约概率降序排列,计算每一等份中违约与正常百分比的累积分布,绘制出两者之间的差值就是K-S曲线。其中K-S曲线中的最大值即为K-S统计量,取值范围在0到1之间。
以下是计算K-S值及画图的宏程序:
/**data:逻辑回归后包含验证结果的数据集,var:违约概率变量,status:分类变量,data1:切分后的变量,Mks:最大ks值,M:分组组数**/
%macro KS(data, var, status, data1, Mks,M);
proc sort data=&data;
by &var;
run;
proc sql noprint;
select sum(&status) into:P from &data;
select count(*) into :Ntot from &data;
quit;
%let N=%eval(&Ntot-&P);
data &data1;
set &data nobs=NN;
by &var;
retain tile 1 totP 0 totN 0;
Tile_size=ceil(NN/&M);
if &status=1 then totP=totP+&status;
else totN=totN+1;
Pper=totP/&P;
Nper=totN/&N;
if _N_ = Tile*Tile_Size then
do;
output;
if Tile <&M then
do;
Tile=Tile+1;
SumResp=0;
end;
end;
keep Tile Pper Nper;
run;
data temp;
Tile=0;
Pper=0;
NPer=0;
run;
Data &data1;
set temp &data1;
run;
data &data1;
set &data1;
Tile=Tile/&M;
label Pper='Percent of Positives';
label NPer ='Percent of Negatives';
label Tile ='Percent of population';
KS=NPer-PPer;
run;
proc sql noprint;
select max(KS) into :&Mks from &data1;
run; quit;
proc datasets library=work nodetails nolist;
delete temp ;
run;
quit;
%mend;
%macro PlotKS(data1);
symbol1 value=dot color=red interpol=join height=1;
legend1 position=top;
symbol2 value=dot color=blue interpol=join height=1;
symbol3 value=dot color=green interpol=join height=1;
proc gplot data=&data1;
plot( NPer PPer KS)*Tile / overlay legend=legend1;
run;
quit;
goptions reset=all;
%mend;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10