京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS—计算K-S值及画图
近来,时于夜半下雨,也常在梦里被雨扰醒。究其原因,也是因为近来工作无趣,本身也只喜欢写写SAS或Python代码,做模型,可近来却连数据权限都没有,万灰俱灭。雨声轻轻,却也容易愁闷得睡不着。想着要去外包,却因自己的犹豫不决也没有去成。
好了,不说废话了。昨天有人在微信上问KS的计算方式。今天介绍一下KS值吧。
先看一段程序:
data logistic;
input accident age vision drive;
datalines;
1 17 1 1
1 44 0 0
1 48 1 0
1 55 0 0
1 75 1 1
0 35 0 1
0 42 1 1
0 57 0 0
0 28 0 1
0 20 0 1
0 38 1 0
0 45 0 1
0 47 1 1
0 52 0 0
0 55 0 1
1 68 1 0
1 18 1 0
1 68 0 0
1 48 1 1
1 17 0 0
1 70 1 1
1 72 1 0
1 35 0 1
1 19 1 0
1 62 1 0
0 39 1 1
0 40 1 1
0 55 0 0
0 68 0 1
0 25 1 0
0 17 0 0
0 45 0 1
0 44 0 1
0 67 0 0
0 55 0 1
1 61 1 0
1 19 1 0
1 69 0 0
1 23 1 1
1 19 0 0
1 72 1 1
1 74 1 0
1 31 0 1
1 16 1 0
1 61 1 0
;
proc logistic data=logistic outest=model;
model accident(event='1')=age vision drive/selection=stepwise
sle=0.05 sls=0.05 outroc=roc;
output out= pred p=p1 ;
run;
proc npar1way data=pred noprint;
class accident;
var p1;
output out=ks;
run;
以上是一段常规的计算KS值。
首先要了解什么是KS值,K-S值(kolmogorov-smirnov curve)将总体进行n等分组并按照违约概率降序排列,计算每一等份中违约与正常百分比的累积分布,绘制出两者之间的差值就是K-S曲线。其中K-S曲线中的最大值即为K-S统计量,取值范围在0到1之间。
以下是计算K-S值及画图的宏程序:
/**data:逻辑回归后包含验证结果的数据集,var:违约概率变量,status:分类变量,data1:切分后的变量,Mks:最大ks值,M:分组组数**/
%macro KS(data, var, status, data1, Mks,M);
proc sort data=&data;
by &var;
run;
proc sql noprint;
select sum(&status) into:P from &data;
select count(*) into :Ntot from &data;
quit;
%let N=%eval(&Ntot-&P);
data &data1;
set &data nobs=NN;
by &var;
retain tile 1 totP 0 totN 0;
Tile_size=ceil(NN/&M);
if &status=1 then totP=totP+&status;
else totN=totN+1;
Pper=totP/&P;
Nper=totN/&N;
if _N_ = Tile*Tile_Size then
do;
output;
if Tile <&M then
do;
Tile=Tile+1;
SumResp=0;
end;
end;
keep Tile Pper Nper;
run;
data temp;
Tile=0;
Pper=0;
NPer=0;
run;
Data &data1;
set temp &data1;
run;
data &data1;
set &data1;
Tile=Tile/&M;
label Pper='Percent of Positives';
label NPer ='Percent of Negatives';
label Tile ='Percent of population';
KS=NPer-PPer;
run;
proc sql noprint;
select max(KS) into :&Mks from &data1;
run; quit;
proc datasets library=work nodetails nolist;
delete temp ;
run;
quit;
%mend;
%macro PlotKS(data1);
symbol1 value=dot color=red interpol=join height=1;
legend1 position=top;
symbol2 value=dot color=blue interpol=join height=1;
symbol3 value=dot color=green interpol=join height=1;
proc gplot data=&data1;
plot( NPer PPer KS)*Tile / overlay legend=legend1;
run;
quit;
goptions reset=all;
%mend;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22