
R语言-选择“最佳”的回归模型
尝试获取一个回归方程时,实际上你就面对着从众多可能的模型中做选择的问题。是不是所有的变量都要包括?抑或去掉那个对预测贡献不显著的变量?还是需要添加多项式项和/或交互项来提高拟合度?最终回归模型的选择总是会涉及预测精度(模型尽可能地拟合数据)与模型简洁度(一个简单且能复制的模型)的调和问题。如果有两个几乎相同预测精度的模型,你肯定喜欢简单的那个。本节讨论的问题,就是如何在候选模型中进行筛选。注意,“最佳”是打了引号的,因为没有做评价的唯一标准,最终的决定需要调查者的评判。
8.6.1 模型比较
用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度。所谓嵌套模型,即它的一些项完全包含在另一个模型中。在states的多元回归模型中,我们发现Income和Frost的回归系数不显著,此时你可以检验不含这两个变量的模型与包含这两项的模型预测效果是否一样好(见代码清单8-11)。
此处,模型1嵌套在模型2中。 anova()函数同时还对是否应该添加Income和Frost到线性模型中进行了检验。由于检验不显著(p=0.994),因此我们可以得出结论:不需要将这两个变量添加到线性模型中,可以将它们从模型中删除。
AIC(Akaike
Information Criterion,赤池信息准则)也可以用来比较模型,它考虑了模型的统计拟合度以及用来拟合的参数数目。
AIC值越小的模型要优先选择,它说明模型用较少的参数获得了足够的拟合度。该准则可用AIC()函数实现(见代码清单8-12)。
此处AIC值表明没有Income和Frost的模型更佳。注意, ANOVA需要嵌套模型,而AIC方法不需要。比较两模型相对来说更为直接,但如果有4个、 10个,或者100个可能的模型怎么办呢?这便是下节的主题。
8.6.2 变量选择
从大量候选变量中选择最终的预测变量有以下两种流行的方法:逐步回归法(stepwise method)和全子集回归(all-subsets regression)。
1. 逐步回归
逐步回归中,模型会一次添加或者删除一个变量,直到达到某个判停准则为止。例如,
向前逐步回归(forward stepwise)每次添加一个预测变量到模型中,直到添加变量不会使模型有所改进为止。
向后逐步回归(backward
stepwise)从模型包含所有预测变量开始,一次删除一个变量直到会降低模型质量为止。而向前向后逐步回归(stepwise
stepwise,通常称作逐步回归,以避免听起来太冗长),结合了向前逐步回归和向后逐步回归的方法,变量每次进入一个,但是每一步中,变量都会被重新评价,对模型没有贡献的变量将会被删除,预测变量可能会被添加、删除好几次,直到获得最优模型为止。
逐步回归法的实现依据增删变量的准则不同而不同。 MASS包中的stepAIC()函数可以实现逐步回归模型(向前、向后和向前向后),依据的是精确AIC准则。代码清单8-13中,我们应用的是向后回归。
开始时模型包含4个(全部)预测变量,然后每一步中,
AIC列提供了删除一个行中变量后模型的AIC值, <none>中的AIC值表示没有变量被删除时模型的AIC。第一步,
Frost被删除, AIC从97.75降低到95.75;第二步, Income被删除,
AIC继续下降,成为93.76,然后再删除变量将会增加AIC,因此终止选择过程。
逐步回归法其实存在争议,虽然它可能会找到一个好的模型,但是不能保证模型就是最佳模型,因为不是每一个可能的模型都被评价了。为克服这个限制,便有了全子集回归法。
2. 全子集回归
全子集回归,顾名思义,即所有可能的模型都会被检验。分析员可以选择展示所有可能的结果,也可以展示n 个不同子集大小(一个、两个或多个预测变量)的最佳模型。 例如, 若nbest=2,先展示两个最佳的单预测变量模型,然后展示两个最佳的双预测变量模型,以此类推,直到包含所有的预测变量。全子集回归可用leaps包中的regsubsets()函数实现。你能通过R平方、调整R平方或Mallows Cp统计量等准则来选择“最佳”模型。
R平方含义是预测变量解释响应变量的程度;调整R平方与之类似,但考虑了模型的参数数目。
R平方总会随着变量数目的增加而增加。当与样本量相比,预测变量数目很大时,容易导致过拟合。R平方很可能会丢失数据的偶然变异信息,而调整R平方则提供了更为真实的R平方估计。另外,
Mallows Cp统计量也用来作为逐步回归的判停规则。广泛研究表明,对于一个好的模型,它的Cp统计量非常接近于模型的参数数目(包括截距项)。
在代码清单8-14中,我们对states数据进行了全子集回归。结果可用leaps包中的plot()函数绘制(如图8-17所示),或者用car包中的subsets()函数绘制(如图8-18所示)。
初看图8-17可能比较费解。第一行中(图底部开始),可以看到含intercept(截距项)和Income的模型调整R平方为0.33,含intercept和Population的模型调整R平方为0.1。跳至第12行,你会看到含intercept、
Population、 Illiteracy和Income的模型调整R平方值为0.54,而仅含intercept、
Population和Illiteracy的模型调整R平方为0.55。此处,你会发现含预测变量越少的模型调整R平方越大(对于非调整的R平方,这是不可能的)。图形表明,双预测变量模型(Population和Illiteracy)是最佳模型。
在图8-18中,你会看到对于不同子集大小,基于Mallows
Cp统计量的四个最佳模型。越好的模型离截距项和斜率均为1的直线越近。图形表明,你可以选择这几个模型,其余可能的模型都可以不予考虑:含Population和Illiteracy的双变量模型;含Population、
Illiteracy和Frost的三变量模型,或Population、
Illiteracy和Income的三变量模型(它们在图形上重叠了,不易分辨) ;含Population、 Illiteracy、
Income和Frost的四变量模型。
大部分情况中,全子集回归要优于逐步回归,因为考虑了更多模型。但是,当有大量预测变量时,全子集回归会很慢。一般来说,变量自动选择应该被看做是对模型选择的一种辅助方法,而不是直接方法。拟合效果佳而没有意义的模型对你毫无帮助,主题背景知识的理解才能最终指引你获得理想的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03