汽车保险行业,大数据AI 应用的三大玩法
汽车保险行业的大数据人工智能应用(Insutech)是我最感兴趣的话题,在这个领域有三大流派:
第一大流派最值得关注,它们是以车信数据、精励联讯、凯泰铭科技、德联易控为代表的少数创新科技公司,它们的数据和模型技术侧重点不同,但都已经应用于实际生产,得到车险行业认可。
第二大流派是保险公司自身的风险控制技术运营部门,包括人保、平安在内的车险科技团队也在摸索,但从投入产出看,车险公司自身去研发大数据 AI 应用成本无法摊薄,投入的力度和可持续性可疑。
第三大流派是百融金服、百度等偏重用户画像和营销的 AI 通用解决方案供应商,这类服务的同质化比较严重,受互联网营销造假风潮影响,这类服务以往在汽车整车营销领域已经有应用,但效果不显著,要赢得结果导向的保险公司认同尚需时日。
对于第一大流派,几家科技公司的产品服务差异比较大。
车信数据的机器学习模型技术原理类似谷歌的 AlphaGo,大数据机器学习的产品服务既包括前端的承保展业,也包括后端的理赔反欺诈。从应用范围看,既可以是车险公司,也可以是车险中介机构,还可以是整车企业、4S 经销商集团。同样的技术逻辑,车信数据不仅服务车险公司,也服务汽车金融公司。目前看,车信数据是这个领域本土技术和数据数据能力最专业的公司,没有之一。随着更多数据的开放,以车信数据为代表的 Insutech 和 Fintech 公司会有更多用武之地。
第二大流派是保险公司自身的风控技术团队。本质看,保险公司的信息系统研发需求都是自发产生的,主要的信息系统研发也是中科软等大型软件公司的生意,但随着业务需求的变化,主要大型保险公司都建立了自己的科技研发团队,满足自身研发需求。风险控制这类核心需求更是自建研发团队的重点工作,但受限于技术迭代速度,在大数据机器学习 AI 领域,保险公司要短期积累研发团队还比较困难。因此,目前看,车险公司在承保端还停留在黑名单模式下,在理赔端还停留在传统规则引擎模式下。对于大数据 AI 技术的应用仍然处于探索阶段,我认为,接下来最靠谱的方式一定是建立自己的技术采购团队,尽快扶植和投资外部科技公司,加速创新,不仅保证国内技术领先,也需要借助一带一路,尽快进入全球车险市场。
第三大流派是百度等大数据技术提供商,由于数据敏感性,百度本身也参与投资车险公司,这导致车险企业与百度的此类服务存在应用障碍,保险公司不敢把自己的敏感数据交给潜在竞争对手。与此同时,由于百度的金融保险团队与大搜索团队并非同一团队,要体现百度在车险领域的大数据 AI 应用优势,仅仅提供技术是不够的,如果不能发挥大数据和大搜索的内部协同,给车险企业一个有竞争力的解决方案,很难在 Insutech 领域超越专业垂直服务供应商。当然,通过投资并购也有可能解决这个问题,但目前看,可以投资并购的标的并不多,懂这些的投资人更不多见,已经拿到国家大脑项目的百度要抓住这个机会,需要尽快在车险金融等领域建立专家顾问团队。
由于车险科技的创新仍然在路上,车险公司的业务保守性和监管政策的变化都会影响这个产业的发展,随着金融风控成为行业的主旋律,可以预见到未来几年车险公司在车险风控领域的投入会加大力度。无论哪个派别的车险科技都有很大机会成长。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21