R语言绘图之页面布局
par()、layout()、split.screen()函数
1. par()函数的参数详解
函数par()可以用来设置或者获取图形参数,par()本身(括号中不写任何参数)返回当前的图形参数设置(一个list);若要设置图形参数,则可用par(tag = value)的形式,其中tag的详细说明参见下面的列,value就是参数值,例如:
par(mar = c(4, 4, 1, 0.5), bg = "yellow") # 设置边距参数和背景色
par(pin=c(2,3)) #定义图形为2英寸宽,3英寸高
par(lwd=2,cex=1.5) #线条为默认的2倍宽,符号为默认的1.5倍
par(cex.axis=0.75,font.axis=3) #坐标轴文字缩放为原来的75%,斜体
col, pch, cex, lty, lwd 这些参数的意思与par()中的参数基本相同,有所区别的是,par()中这些参数只能设置一个单值,而这里可以对它们设置一个向量,这个向量的值将依次运用到各个元素上,若向量长度短于元素个数,那么向量会被循环使用,直到所有的元素都被画出来,事实上,向量的循环使用也是R图形参数的一大特点。
2. layout():mat用矩阵设置窗口的划分,矩阵的0元素表示该位置不画图,非0元素必须包括从1开始的连续的整数值,比如:1……N,按非0元素的大小设置图形的顺序。widths用来设置窗口不同列的宽度,heights设置不同行的高度。par()的mfcol,和mfrow参数也有类似layout的功能。layout()函数的一般形式为layout(mat),mat为一矩阵,mat元素的数量决定了一个output device被等分成几份相同元素为一块。
layout(matrix(c(1,2,3,0,2,3,0,0,3),nr=3)) matrix有9个元素,具有这样的形式:
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 2 2 0
[3,] 3 3 3
把这个矩阵传入layout函数,我们就能得到这样的output device
如此,figure1占据了左上角的一个格子,第二行的前两个格子属于figure2,figure3占满最下一行的三个格子。
layout(matrix(1:4,2,2)) #将当前装置分割为矩阵2行2列的布局
[,1] [,2]
[1,] 1 3
[2,] 2 4
layout.show(4) #显示绘图装置分割好的1到4部分;
查看下面代码的不同之处:
layout(matrix(1:6,3,2)) #将当前装置分割为3行2列的布局
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
layout.show(6) #显示布局的编号
layout(matrix(1:6,2,3))#将当前装置分割为2行3列布局
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
layout.show(6)#显示布局编号
layout(matrix(c(1:3,3),2,2)) #建立矩阵,将装置分割为3部分
[,1] [,2]
[1,] 1 3
[2,] 2 3
layout.show(3) #显示布局编号
m<-matrix(1:4,2,2);m #建立矩阵m,2列2行
layout(m,widths=c(1,3),heights=c(3,1)) #将当时装置按照m进行划分,宽度之比为1:3,高度之比为3:1
layout.show(4)
m<-matrix(c(1,1,2,1),2,2);m #建立矩阵
layout(m,widths=c(2,1),heights=c(1,2)) #按照矩阵编号进行分割,编号相同的为同一块,宽度为2:1,高度为1:2
layout.show(2)
m<-matrix(0:3,2,2)#,注意,此矩阵中有0,0是不绘图的,可以查看一下效果
layout(m,c(1,3),c(1,3)) #行为1:3,列为1:3
layout.show(3)
2. 案例一:
attach(mtcars)
opar<-par(no.readonly=TRUE)#保存默认设置
par(mfrow=c(2,2))#将画布分割为2*2格局
plot(wt,mpg,main="Scatterplot of wt vs. mpg")
plot(wt,disp,main="Scatterplot of wt vs disp")
hist(wt, main="Histogram of wt")
boxplot(wt,mian="Boxplot of wt")
par(opar)
detach(mtcars)
案例二:
attach(mtcars)
opar<-par(no.readonly=TRUE)
par(mfrow=c(3,1))# 将画布分割为3行,1列格局
hist(wt)
hist(mpg)
hist(disp)
par(opar)
detach(mtcars)
案例三:
attach(mtcars)
layout(matrix(c(1,1,2,3),2,2,byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)
3. split.screen函数
split.screen(c(1,2)):将当前的绘画装置分割为2块,分别为1号2号,可以通过screen(1)或screen(2)进行选择,但此时的分割通常是按水平分割的,如果进行进详细的分割,可以用layout函数。
screen()选择绘图区域,screen(n = , new = TRUE)
eraser.screen() 清除选中的绘图区域,erase.screen(n = )
close.screen() 移除特定的选区,close.screen(n, all.screens = FALSE)
screen Figs中的数字
split.screen()分割后,其余的函数才能使用。若无参数,则返回分割后小区域的编号,以向量的形式出现
close.screen退出分割,如果关闭当前的区域(即分割后的小区域),则进入下一个小区域,close.screen(all = TRUE)表示退出分割状态
例子:
par(bg = "white") # 白色背景
split.screen(c(2, 1)) # 分为上下两个屏,2行1列
split.screen(c(1, 3), screen = 2) # 将2屏再细分为3个小屏,即2屏分为1行3列
screen(1) # 选中1屏
plot(10:1)
screen(4) # 选4屏
plot(10:1)
close.screen(all = TRUE) # 退出分屏模式
split.screen(c(2, 1)) # 分为上下2个屏
split.screen(c(1, 2), 2) # 将下屏分为2个屏
plot(1:10) # 在第3屏绘图,此时为当前激活的屏
erase.screen() # 清除当前屏
plot(1:10, ylab = "ylab 3")
screen(1) # 选1屏
plot(1:10)
screen(4) # 激活4屏
plot(1:10, ylab = "ylab 4")
screen(1, FALSE) # 返回1屏,但不清空1屏,如果为screen(1,TRUE),则清空1屏
plot(10:1, axes = FALSE, lty = 2, ylab = "") # 加点
axis(4) # 右边加坐标轴
title("Plot 1")
close.screen(all = TRUE) # 退出分屏模式
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21