1 数据导入
数据常用格式.csv/.txt/.xls/.json/.xml。
R语言提供相应的函数和库实现对这些数据格式的导入。
现已导入.csv格式和以tab分隔的.txt格式为例
# 读.csv格式
data1<-read.csv(file='C:/abc.csv',header=TRUE,sep=',')
# 读以tab分隔的.txt格式
data2<-read.csv(file='C:/abc.txt',header=TRUE,sep='\t')
2 数据类型变换
数据类型变换包括数据类型测试和数据类型之间的变换。
数据类型测试采用is.xyz系列函数,该函数测试是否为某一种数据类型,返回值是逻辑类型,即TRUE和FALSE。
数据类型变换采用as.xyz系列函数,把某一种数据类型变换到另一种数据类型。
例如:
is.numeric(),is.character(),is.vector(),is.matrix(),is.data.frame()
as.numeric(),as.character(),as.vector(),as.matrix(),as.data.frame()
3 数据集变换
library(reshape)
data3<-melt(mydata,id=c("id","time"))4 数据排序
利用order函数对单一变量或者多个变量进行排序(升序或者降序),返回具有排序功能的索引位置。
# sort by var1
data4<-old[order(var1),]
# sort by var1 and var2 (descending)
data5<-old[order(var1,-var2),]
5 数据可视化
利用R语言做数据可视简单和高效。
R语言画直方图
set.seed(1234)
score<-rnorm(n=1000,m=80,sd=20)
hist(score)
在直方图上面添加密度曲线
hist(score,
freq=FALSE,
xlab="Score",
main="Distribution of score",
col="lightgreen",
xlim=c(0,150),
ylim=c(0,0.02))
curve(dnorm(x,
mean=mean(score),
sd=sd(score)),
add=TRUE,
col="darkblue",
lwd=2)
6 列联表
列联表是理解各类分布的最基本和最有效的方式。
单变量列联表
多变量列联表
参考代码
library(gmodels)
CrossTable(mydata$myrowvar,mydata$mycolvar)
7 数据抽样
利用sample函数实现数据抽样
从数据集中不放回地随机抽取100个样本
参考代码:
mysample<-mydata[sample(1:nrow(mydata),100,replace=FALSE),]
8 数据去重
利用unique函数去掉向量中的重复值
set.seed(1234)
x<-round(rnorm(20,10,5))
x
unique(x)
结果如下
9 数据汇总
使用apply系列函数,实现汇总
10 缺失值识别和处理
使用is.na函数识别缺失值,采用均值、中位数、众数、插补法等方法对确实值处理。
y<-c(4,5,6,NA)
is.na(y)
y[is.na(y)]<-mean(y,na.rm=TRUE)
y
11 异常值识别和处理
异常值识别-异常值定位-异常值处理
异常值识别方法:盒箱图和简单统计量
异常值处理方法:剔除法/修复法
12 数据合并
利用merge函数或者rbind函数或者sqldf包基于数据库的连接操作
# merge two data frames by ID
total<-merge(data frameA,data frameB,by="ID"
# merge two data frames by ID and Country
total<-merge(data frameA,data frameB,by=c("ID","Country"))
total<-rbind(data frameA,data frameB)
总结
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16