1 数据导入
数据常用格式.csv/.txt/.xls/.json/.xml。
R语言提供相应的函数和库实现对这些数据格式的导入。
现已导入.csv格式和以tab分隔的.txt格式为例
# 读.csv格式
data1<-read.csv(file='C:/abc.csv',header=TRUE,sep=',')
# 读以tab分隔的.txt格式
data2<-read.csv(file='C:/abc.txt',header=TRUE,sep='\t')
2 数据类型变换
数据类型变换包括数据类型测试和数据类型之间的变换。
数据类型测试采用is.xyz系列函数,该函数测试是否为某一种数据类型,返回值是逻辑类型,即TRUE和FALSE。
数据类型变换采用as.xyz系列函数,把某一种数据类型变换到另一种数据类型。
例如:
is.numeric(),is.character(),is.vector(),is.matrix(),is.data.frame()
as.numeric(),as.character(),as.vector(),as.matrix(),as.data.frame()
3 数据集变换
library(reshape)
data3<-melt(mydata,id=c("id","time"))4 数据排序
利用order函数对单一变量或者多个变量进行排序(升序或者降序),返回具有排序功能的索引位置。
# sort by var1
data4<-old[order(var1),]
# sort by var1 and var2 (descending)
data5<-old[order(var1,-var2),]
5 数据可视化
利用R语言做数据可视简单和高效。
R语言画直方图
set.seed(1234)
score<-rnorm(n=1000,m=80,sd=20)
hist(score)
在直方图上面添加密度曲线
hist(score,
freq=FALSE,
xlab="Score",
main="Distribution of score",
col="lightgreen",
xlim=c(0,150),
ylim=c(0,0.02))
curve(dnorm(x,
mean=mean(score),
sd=sd(score)),
add=TRUE,
col="darkblue",
lwd=2)
6 列联表
列联表是理解各类分布的最基本和最有效的方式。
单变量列联表
多变量列联表
参考代码
library(gmodels)
CrossTable(mydata$myrowvar,mydata$mycolvar)
7 数据抽样
利用sample函数实现数据抽样
从数据集中不放回地随机抽取100个样本
参考代码:
mysample<-mydata[sample(1:nrow(mydata),100,replace=FALSE),]
8 数据去重
利用unique函数去掉向量中的重复值
set.seed(1234)
x<-round(rnorm(20,10,5))
x
unique(x)
结果如下
9 数据汇总
使用apply系列函数,实现汇总
10 缺失值识别和处理
使用is.na函数识别缺失值,采用均值、中位数、众数、插补法等方法对确实值处理。
y<-c(4,5,6,NA)
is.na(y)
y[is.na(y)]<-mean(y,na.rm=TRUE)
y
11 异常值识别和处理
异常值识别-异常值定位-异常值处理
异常值识别方法:盒箱图和简单统计量
异常值处理方法:剔除法/修复法
12 数据合并
利用merge函数或者rbind函数或者sqldf包基于数据库的连接操作
# merge two data frames by ID
total<-merge(data frameA,data frameB,by="ID"
# merge two data frames by ID and Country
total<-merge(data frameA,data frameB,by=c("ID","Country"))
total<-rbind(data frameA,data frameB)
总结
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20