1 数据导入
数据常用格式.csv/.txt/.xls/.json/.xml。
R语言提供相应的函数和库实现对这些数据格式的导入。
现已导入.csv格式和以tab分隔的.txt格式为例
# 读.csv格式
data1<-read.csv(file='C:/abc.csv',header=TRUE,sep=',')
# 读以tab分隔的.txt格式
data2<-read.csv(file='C:/abc.txt',header=TRUE,sep='\t')
2 数据类型变换
数据类型变换包括数据类型测试和数据类型之间的变换。
数据类型测试采用is.xyz系列函数,该函数测试是否为某一种数据类型,返回值是逻辑类型,即TRUE和FALSE。
数据类型变换采用as.xyz系列函数,把某一种数据类型变换到另一种数据类型。
例如:
is.numeric(),is.character(),is.vector(),is.matrix(),is.data.frame()
as.numeric(),as.character(),as.vector(),as.matrix(),as.data.frame()
3 数据集变换
library(reshape)
data3<-melt(mydata,id=c("id","time"))4 数据排序
利用order函数对单一变量或者多个变量进行排序(升序或者降序),返回具有排序功能的索引位置。
# sort by var1
data4<-old[order(var1),]
# sort by var1 and var2 (descending)
data5<-old[order(var1,-var2),]
5 数据可视化
利用R语言做数据可视简单和高效。
R语言画直方图
set.seed(1234)
score<-rnorm(n=1000,m=80,sd=20)
hist(score)
在直方图上面添加密度曲线
hist(score,
freq=FALSE,
xlab="Score",
main="Distribution of score",
col="lightgreen",
xlim=c(0,150),
ylim=c(0,0.02))
curve(dnorm(x,
mean=mean(score),
sd=sd(score)),
add=TRUE,
col="darkblue",
lwd=2)
6 列联表
列联表是理解各类分布的最基本和最有效的方式。
单变量列联表
多变量列联表
参考代码
library(gmodels)
CrossTable(mydata$myrowvar,mydata$mycolvar)
7 数据抽样
利用sample函数实现数据抽样
从数据集中不放回地随机抽取100个样本
参考代码:
mysample<-mydata[sample(1:nrow(mydata),100,replace=FALSE),]
8 数据去重
利用unique函数去掉向量中的重复值
set.seed(1234)
x<-round(rnorm(20,10,5))
x
unique(x)
结果如下
9 数据汇总
使用apply系列函数,实现汇总
10 缺失值识别和处理
使用is.na函数识别缺失值,采用均值、中位数、众数、插补法等方法对确实值处理。
y<-c(4,5,6,NA)
is.na(y)
y[is.na(y)]<-mean(y,na.rm=TRUE)
y
11 异常值识别和处理
异常值识别-异常值定位-异常值处理
异常值识别方法:盒箱图和简单统计量
异常值处理方法:剔除法/修复法
12 数据合并
利用merge函数或者rbind函数或者sqldf包基于数据库的连接操作
# merge two data frames by ID
total<-merge(data frameA,data frameB,by="ID"
# merge two data frames by ID and Country
total<-merge(data frameA,data frameB,by=c("ID","Country"))
total<-rbind(data frameA,data frameB)
总结
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30