
R语言在生态学研究中的应用分析
随着观测手段的不断进步和长期观测数据的不断积累,加上数据共享机制不断完善,生态学研究已经跨入的大数据的时代。面对巨量的原始数据,一个生态学者需要运用相当可观的数学知识和编程技巧来把它们转化成方便处理的有效数据。因此,现代生态学研究对研究者的数据分析和处理能力要求更高。传统的统计软件已经很难满足当前的数据分析需求。
近年来,R语言以其灵活、开放、易于掌握、免费等诸多优点,在生态学研究各领域迅速传播并赢得广大研究者的青睐和应用。为了证实这个结论,我们通过逐篇查阅的方式,统计近5年来(2012-2016)20种影响因子3以上与生态学SCI杂志20325篇研究论文(不包括综述)使用R语言作为数据分析工具的情况(图1和图2)。
结果表明,2012年这20种刊物总发表研究论文数为3845篇,使用R语言作为数据分析工具的为1309篇,使用比例为33.9%;2013年总发表论文数为4180篇,使用R语言为1607篇,使用比例为38.7%;2014年总发表论文数为4169篇,使用R语言为1831篇,使用比例为42.1%; 2015年总发表论文数为4030篇,使用R语言为1942篇,使用比例为49.0%;2016年总发表论文数为4101篇,使用R语言为2206篇,使用比例为54.2%。可见近5年来,生态学研究论文使用R语言作为分析工具比例呈现快速增长趋势,并在2016年已经超过50%,占居半壁江山,以不争的事实说明R语言已经成为生态学研究中最主要的数据分析工具(图2)。
2016年使用R比例最高前三个刊物分别为Ecography(75.6%), Journal of Ecology(73.8%), Methods in Ecology and Evolution (70.1%),这三个刊物使用R的论文比例均超过70%。
图1.近5年来20种SCI生态学杂志所发表的研究论文使用R语言作为数据分析工具的比例趋势
图2. 20种SCI生态学杂志所发表的研究论文使用R语言作为数据分析工具的平均比例趋势
以上统计结果表明,在国际上选择R语言作为生态学数据分析工具已经成为“标配”。但相比国际SCI刊物,国内生态学刊物内论文选择R作为数据分析工具比例却比较低。我们用同样的方法查阅了4个国内生态学杂志:《生态学报》、《植物生态学报》、《生物多样性》和《应用生态学报》近5年来所发论文R语言使用比例。结果表明,虽然使用R的比例也正呈现逐年增加的趋势(图3),但是还是处于相当低的水平。
《植物生态学报》和《生物多样性》这两个刊物目前已经达到10%以上,但是《生态学报》和《应用生态学报》这两个刊物的使用R比例仅有1.3%左右,跟SCI刊物比相差甚远。说明R语言在国内学者和研究生中使用普及率并不高,可能有几个方面的原因:1)虽然R语言的设计之初就是避免通过大量编程实现统计算法,但最基本的编程能力还是需要的,因此对于一般非计算机专业的研究人员来说无疑提高了难度。2)掌握统计学知识,提高逻辑分析能力是用好R的非常重要的条件,但国内研究人员和研究生统计学基础普遍比国外的同行弱;3)与其他的技能一样,学会熟练使用R语言也并非一日之功。当前国内普遍浮躁的学术氛围下,很多研究人员和研究生们不愿意花很多时间来学习R语言,他们更习惯打开一个菜单驱动的统计平台,并在几分钟内得到结果;4)最后应该归咎于R语言所有帮助系统都为英文版本,在国内普及起来难度比较大。
总之,在学术界R语言得到广泛的应用,这已经成为大家公认的事实。如果现在不会R,你没有优势可言;如果5年后,你还不会R,那你差不多就可以被淘汰了。当然R毕竟只是程序语言,是编程软件,是解决问题的手段。它犹如降龙十八掌的最后一掌,是前面所有功力的集中体现。掌握统计学知识,提高逻辑分析能力是我们用好R需要修炼的内功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09