
当编写任何编程语言程序,需要使用不同的变量来存储各种信息。变量不过是用于保留存储器位置的存储值。这意味着,当创建一个变量,它会保留在内存中的一些空间。
你可能喜欢存储诸如字符以外的数据类型,如:宽字符,整型,浮点型,双浮点型,布尔等信息。基于变量的数据类型,操作系统分配内存,并决定什么可以存储在存储器。
在其他编程语言中,如C和JavaR中的变量没有声明为某些数据类型。变量分配R-对象和R对象的数据类型变为变量的数据类型。有许多类型的R-对象。常用的有:
矢量
列表
矩阵
数组
因子
数据帧
这些对象的是最简单的矢量对象并且这些原子矢量有六种数据类型,也被称为六类向量。另外R-对象是建立在原子向量。
因此,在R语言中的非常基本的数据类型是R-对象,如上图所示占据着不同类别的元素向量。请注意R语言中类的数量并不只限于上述的六种类型。 例如,我们可以使用许多原子向量以及创建一个数组,它的类将成为数组。
向量
当您希望使用多个元素创建向量,应该使用c()函数,这意味着元素结合成一个向量。
# Create a vector.
apple <- c('red','green',"yellow")
print(apple)
# Get the class of the vector.
print(class(apple))
当我们上面的代码执行时,它产生以下结果:
[1] "red" "green" "yellow"
[1] "character"
列表
列表是R-对象,它里面可以包含多个不同类型的元素,如向量,函数,甚至是另一个列表。
# Create a list.
list1 <- list(c(2,5,3),21.3,sin)
# Print the list.
print(list1)
当我们上面的代码执行时,它产生以下结果:
[[1]]
[1] 2 5 3
[[2]]
[1] 21.3
[[3]]
function (x) .Primitive("sin")
矩阵
矩阵是一个二维矩形数据集。它可以使用一个向量输入到矩阵函数来创建。
# Create a matrix.
M = matrix( c('a','a','b','c','b','a'), nrow=2,ncol=3,byrow = TRUE)
print(M)
当我们上面的代码执行时,它产生以下结果:
[,1] [,2] [,3]
[1,] "a" "a" "b"
[2,] "c" "b" "a"
数组
尽管矩阵限于两个维度,数组可以是任何数目的尺寸大小。数组函数使用它创建维度的所需数量的属性-dim。在下面的例子中,我们创建了两个元素数组,这是3×3矩阵。
# Create an array.
a <- array(c('green','yellow'),dim=c(3,3,2))
print(a)
当我们上面的代码执行时,它产生以下结果:
, , 1
[,1] [,2] [,3]
[1,] "green" "yellow" "green"
[2,] "yellow" "green" "yellow"
[3,] "green" "yellow" "green"
, , 2
[,1] [,2] [,3]
[1,] "yellow" "green" "yellow"
[2,] "green" "yellow" "green"
[3,] "yellow" "green" "yellow"
因子
因子是使用向量创建的R对象。它存储随同该向量作为标记元素的不同值的向量。 标签始终是字符,而不论它在输入向量的是数字或字符或布尔等。它们在统计建模有用。
运用 factor() 函数创建因子。nlevels 函数给出级别的计数。
# Create a vector.
apple_colors <- c('green','green','yellow','red','red','red','green')
# Create a factor object.
factor_apple <- factor(apple_colors)
# Print the factor.
print(factor_apple)
print(nlevels(factor_apple))
当我们上面的代码执行时,它产生以下结果:
[1] green green yellow red red red yellow green
Levels: green red yellow
# applying the nlevels function we can know the number of distinct values
[1] 3
数据帧
数据帧是表格数据对象。不像在数据帧的矩阵,每一列可以包含不同的数据的模型。第一列可以是数字,而第二列可能是字符和第三列可以是逻辑。它与向量列表的长度相等。
数据帧所使用 data.frame()函数来创建。
# Create the data frame.
BMI <- data.frame(
gender = c("Male", "Male","Female"),
height = c(152, 171.5, 165),
weight = c(81,93, 78),
Age =c(42,38,26)
)
print(BMI)
当我们上面的代码执行时,它产生以下结果:
gender height weight Age
1 Male 152.0 81 42
2 Male 171.5 93 38
3 Female 165.0 78 26
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03