浅析检察工作中的大数据运用
最高人民检察院检察长曹建明在十二届全国人大五次会议第三次全体会议上作最高人民检察院工作报告时提出,2017年,检察机关将强化大数据战略思维,深化“智慧检务”建设,实现四级检察机关司法办案、检务公开等“六大平台”全覆盖。“智慧检务”的全面建设,离不开大数据的运用。对于检察工作与大数据运用的关系,笔者认为可以从以下方面分析。
大数据运用有助于检察工作提升。从检务实践经验来看,大数据的运用,对进一步整合司法资源、规范司法行为、深化检务公开、提升工作效能、服务群众等方面都起到了积极的推动作用,有力地提升了检察工作质量。
大数据运用面临的问题。大数据运用在检务工作中虽然有广阔的应用前景,但就现状而言,检察机关的大数据运用仍有很多问题与不足。
一是数据隔离导致数据聚合度低。数据共享是运用大数据技术的基础和前提。然而,现实中数据隔离无处不在。大量数据以数据孤岛的状态被分割在各部门内部而无法被关联与聚合。目前,政法机关和行政机关的大数据应用平台多为各自建设,除数据隔离的问题外,还有硬件投入较大导致的零星建设和更新缓慢等问题。而数据不能共享导致检察机关司法办案调取涉案数据的手续庞杂、费时费力。
二是数据分析与个人主观能动的关系。大数据时代,检察工作人员办案的每一个步骤都会被大数据记载和上传,而上级机关对下级工作的考核便依据这些数据,这可能导致某些工作人员为应付上级机关的检查,工作只做表面文章,录入相关案件数据的过程中,只录入对其工作有利的数据,而不是与案件相关的所有数据,造成案件录入失实,影响检察机关公信力。
三是数据应用人才匮乏、应用水平较低。大数据既然是一种技术,意味着需要专业知识来掌控,因此,检察机关借助大数据运用进行司法办案、服务群众等工作都需要具有丰富经验的大数据分析人才支撑协助。目前,各级检察机关虽然都在积极培养自己的大数据人才,但仍存在专职人员较少、专业程度较低。
四是检务公开与检务监督管理存在矛盾。大数据时代,随着检务公开的发展,公众更容易获得案件的相关信息,也更容易在网络上就案件发表自己的看法,对检察机关的工作进行监督。一些媒体和网民为追求眼球效应,可能会发布一些不实或夸大事实的言论,甚至不惜为此造谣,严重破坏了检察机关的公信力。此外,当事人个人信息和隐私的保护工作也是检察工作中大数据运用面临的挑战之一。
大数据运用注意风险防控。虽然大数据运用仍面临以上诸多问题,但笔者认为,检察机关可以通过以下措施做到扬长避短,最大程度上发挥大数据运用的功效。
一是整合数据信息,完善数据库。建立独立、全面的数据和信息收集、存储、分析系统,建立精简使用的数据指标,在海量的数据信息里收集少而极具代表性的数据,形成检察机关的数据库资源,为检察机关案件的办理提供借鉴,并通过技术手段使得最高人民检察院对各级检察机关办理的案件中的瑕疵进行提醒和规制,提升检察机关案件办理和执法的综合能力,提升检察官整体办案水平,推进检务工作信息化、智能化。同时,深度融合各类数据平台,特别是注重积极推动政法单位数据平台之间的互联互通,实现信息共享共用,共同形成促进司法公正、提升司法效率的强大合力和良性互动,进一步实现检察机关信息化转型升级。
二是强化专业人才培养。加大数据应用能力培训力度,提升干警大数据应用能力,做到面对大数据应用设备,普通干警人人会用,优秀干警各有所长,最大程度上实现大数据充分运用。同时,整合统计、控申举报、技术等部门职能,形成数据信息采集、储存、分析的系统化管理;强化内设机构设置,设立数据、信息和情报部门;招录专业技术人才充实检察队伍,选派青年干警参加技术培训,加大对复合型检察技术专业人才的培养。
三是切实做好对当事人个人信息和隐私的保护。在大数据应用的背景下,结合国家网络安全法和检察机关办案具体情况,制定检察机关内部使用的《当事人个人信息和隐私保护规定》,采取严格的审批制度和审核制度,对当事人个人信息的采集、录入、存储、删除、销毁等阶段,通过严格的内部规定和程序来约束,防止个人信息的泄露和被侵犯。对于不遵守规定者,加大处罚力度,明确责任追究人和相应的处罚措施。同时,加强对干警培训,强调个人信息保护的重要性和个人隐私泄露的危害,从思想程度上提高干警保护个人信息安全的主观认识程度,重视工作中的每个环节,意识到个人信息和隐私的保护对案件相关人员的重要性。
四是完善电子检务公开。完善检察机关检务公开制度,确立统一的全国检察机关检务公开标准,并保留适当的弹性,允许各地区可根据自身特点和优势进行完善,实现更全面、更深层次的检务公开。完善电子检务公开平台建设,不断加大在门户网站、检察院案件信息公开网、新媒体平台上的检务公开力度,保持案件信息的实时发布与更新,对于民众的质疑及时回应,不给造谣、传谣者留有空间,真正满足社会公众对检务公开的期望,实现检务公开和检务监督的良性互动,维护检察机关公正权威的形象
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31