大数据时代,拿什么终结信息乱象
高考考生即将迎来填报志愿环节,也是教育骗局最猖獗之时。个人信息泄露,早就不是新鲜事。但值得关注的是,随着移动互联技术的快速发展,信息泄露已呈全方位态势。
日前,广东省教育厅发布《广东省普通高等学校一览表》,并曝光带“广东/广州”字样的12所假冒大学。羊城晚报记者据此调查发现,与“虚假大学”“野鸡大学”联系密切的考生个人信息买卖现象依然嚣张。在以“高考名单”“招生资源”等为名的QQ群中,有群主称千元就可买到汕尾3万多名考生的信息,其所发截图的13则信息中,有10则能联系到相关考生。
此类事件不单单是诈骗案件问题,涉及到更深层次的大数据时代个人信息泄露及其防范与管控等社会性问题。
一般认为个人信息是一切可以识别自然人的信息的总和,这些信息包括了一个人生理的、心理的、智力的、个体的、社会的、经济的、文化的、家庭的等等方面。6月1日实施的《中华人民共和国网络安全法》对个人信息作了明晰的界定。然而,随着大数据技术的普及,个人信息内涵发生了极大的扩展。
大数据是指以多元形式,自许多来源搜集而来的庞大数据组。经过行业信息化建设,医疗、交通、金融等领域已经积累了许多内部数据,构成大数据资源的“存量”。
而移动互联网和物联网的发展,大大丰富了大数据的采集渠道,来自外部社交网络、可穿戴设备、车联网、物联网及政府公开信息平台的数据都成为大数据增量数据资源的主体。
当前,移动互联网的深度普及,为大数据应用提供了丰富的数据源。这些看似不相干的个人行为信息,经过大数据公司的云处理分析,却互相关联,极具社会价值和商业价值。比如,登录各种吃喝玩乐软件的账号,需要手机认证甚至实名认证,原本分散的信息就这么被串联了起来;再比如,打车软件的行车记录,结合时间就能精确定位出你的家、单位、常去地点。
这些数据对于商家来说,无异于金矿,它可让商家快速精准地找到自己的用户,把产品或服务推销出去。但另一方面,不法分子有了获取不当利益的技术手段。这也是中国地下数据黑市规模不断壮大的根本原因。个人信息趋于数据化、网络化和社会化,也使得个人信息更容易被非法获取和买卖。
一些技术先进的大数据公司隐藏在利益链条上,游走在灰色地带,通过产业链以贩卖、加工、销售数据的方式获取暴利。如某些数据公司,成立子公司,负责收购黑市数据,数据汇总后,再经过清洗和挖掘,出售给其他公司;再如,一些公司通过正规渠道和价格,获得数据接口,但调用数据的时候,会在“本地设备”上形成一个“缓存库”,当数据积累到一定程度后,就将这些“缓存库”再拿出去二次销售。
近日,监管部门正对数据乱象出手,开始清理行动,15家大数据公司被列入调查名单。这似乎是国家介入以规范数据行业的重大信号。
中国大数据产业仍处于非常早期的阶段。大数据交易乱象折射出大数据市场野蛮生长的主要矛盾,即大数据的产业化利用与个人隐私保护之间的矛盾。《网络安全法》首次在法律层面规定了个人信息保护的基本原则,明确指出,收集适用信息应经用户明示同意,不得收集无关信息,不得向他人提供个人信息,经过处理无法识别特定个人且不能复原的除外,不得非法出售个人信息。
但总体上,中国大数据产业的信息安全和数据管理体系尚未建立。迄今为止,有关公民个人信息保护的法律法规总体较为分散,尚未形成系统、有效的有关公民个人信息保护的法律框架体系,这使得在日新月异的大数据技术面前,普通民众根本无力抵御外界对个人信息的侵犯。在这种情况下,通过立法保护个人隐私数据信息应是必由之路。
在此基础上,要建设数字隐私权基础设施,推动相关立法进程打造良性的信息生态,以期建立兼顾安全与发展的数据开放、管理和信息安全保障体系。对于公民个人而言,在享受大数据时代所带来个性化服务的同时,应当加强风险防范意识,在有可能留下隐私数据的情形下要充分考虑隐私暴露而可能带来的不良后果,并采取相应的防范措施。
保护数据的隐私信息是数据搜集者和分析者应当具备的基本道德和责任。
随着监管趋严,大数据行业的整合在所难免,但总的趋势将有利于一些具有正规牌照、合法行业数据源,同时一直规范经营的优质企业脱颖而出。
根据中国信息通信研究院对国内800多家企业的调研来看,企业内部数据仍是大数据主要来源,但对外部数据的需求日益强烈。当前,有32%的企业是通过外部购买来获得数据。信息安全、开放共享等标准规范缺乏,技术安全防范和管理能力不够。如何促进大数据资源建设,提高数据质量,推动跨界融合流通,也是遏制数据黑市的关键问题之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31