京公网安备 11010802034615号
经营许可证编号:京B2-20210330
定性、估算与数学建模
应该说物理学是与数学结合最紧密的学科之一。而且在科学史上,物理学也是最早与数学相结合的学科,甚至很难说清谁对谁的贡献更大;比如牛顿对微积分这种纯粹数学工具的创立,最初也是源于物理学研究的实践和需要。随后才有化学、生物学及至原本归属社会科学的心理学等学科的逐渐精确量化。因而在人们心目中,物理学应该是严密的、准确的,或者说是绝对定量化的。
但当你阅读了赵凯华的《定性与半定量物理学》之后,就会发现原来在物理学中也有诸多并非精确定量甚至仅仅是定性的东西存在。
按照作者在序中的介绍,此书最初起源于1987至1989年的北京大学物理系课程。其时CUSPEA正盛——这是当时中国大学生出国所要通过的一种考试,为李政道所倡导,是没有托福和GRE时代中国大学生留美读书的途径之一,据称当时北大物理系有一半毕业生都要经由此路踏上西行求学之途。而CUSPEA考试不似中国传统考试,较为灵活,风格清新,因而需要为学生补充大量相关知识,故有此课诞生,该书即根据当时的讲稿写成。
说起来这应该算是一部教材,但笔者却是把它当做一部科普图书来阅读的,而且这是一部相当精彩的科普图书。一来在于它与生活的紧密相关,把那些复杂遥远的物理学知识纷纷融入到普通事例当中,让我们感觉到身边原来竟有如此之多的学问和课题;二来在于它的叙述方式,不但平实质朴,而且语言鲜活,同时几乎所有的例证都来自于生活。
本书共分四章:“对称性原理”、“量纲分析”、“数量级估计”和“自然界的物理学”。通过各章内容,作者很大程度上是在教读者如何进行“估算”。
估算在实际生活中具有十分重要的意义。无论是前往某地的大致距离和时间,还是购物时针对不同品牌和商家的选择,恐怕都需要我们进行简单的估算——而且我们平时也在有意或无意地运用着这一方法。大家应该都知道“费米扔纸片”的故事:在一次原子弹实验时,费米迎风扔出一把纸片,根据纸片飞舞的速度等估计数据,大致估算出了原子弹的爆炸当量;后来科学家们进行了详细计算,发现结果与费米的估算数值相当吻合。
有些人也许会不理解:如此粗劣的估算怎么可能准确无误?难道就不会有误差存在吗?诸多的小误差难道不会造成更大的误差吗?不错,是会有误差,但有时候在这里出现的误差,在那里却会为另一个误差所弥补,因而诸多的“正”“负”误差也许刚好互相抵消,使得最终结果大致准确。当然,正确使用估算方法也需要一定的思维方法和训练手段。
在这部著作里,作者就举出了诸多估算的实例。从水滴大约在聚集到怎样的程度就会从房顶滴落,到推算整个宇宙的大致密度、质量和寿命等各种参数。而其中所使用到的数学,其实并不十分复杂。
比如有一道例题是估算地球上的山体最多能有多高。我们都知道,地球上有很多高峰,但它们不可能无限制地高下去,因为超过一定的高度,山体就会因岩石的自重而把自己压垮。因而作者根据岩石的密度等数据进行估算,得出地球上的山峰不会超过15千米。而这一数据与我们的实测数据是相吻合的,因为目前地球上的最高峰珠穆朗玛峰不过8844.43米,不足9千米。唐朝诗人王维曾有诗云:“黄河远上白云间,一片孤城万仞山”,其中“仞”为中国古制单位,没有固定的标准,大约在4至8尺之间,我们姑取其中值6尺,则“万仞”即为20千米,显然比上述估算高,可见此系诗歌的夸张手法
当初阅读此书是因中国科学院物理所的一位博士所荐。其时笔者正在创作科幻小说《蚍蜉的歌唱》,要构造一座比现有高楼还高10倍的大厦;其时纽约的世界贸易中心尚未被恐怖分子所毁,楼高不过400余米,笔者担心自己所“设计”的高厦不足以支撑自重,为识者所笑。那位博士建议笔者阅读此书,并介绍相关的估算方法,结果使笔者受益匪浅。
在仔细重读此书时,笔者正好同时在北京师范大学听讲《数学模型与数学建模》的选修课程——过去没受过这一课程的正规训练,而现在学习也不仅是为了创作上的功利性用途,而是出于一种发自内心的迷恋和喜欢。但听课之后,感觉《定性与半定量物理学》中所讨论的方法,事实上与数学建模的思想非常接近,从思维方法上而言实际上具有异曲同工之妙。只不过现在的数学建模方法,往往会辅以各种软件支持,类似Matlab之类的数学软件,能够将数学建模的结果迅速而直观地表达出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07