京公网安备 11010802034615号
经营许可证编号:京B2-20210330
定性、估算与数学建模
应该说物理学是与数学结合最紧密的学科之一。而且在科学史上,物理学也是最早与数学相结合的学科,甚至很难说清谁对谁的贡献更大;比如牛顿对微积分这种纯粹数学工具的创立,最初也是源于物理学研究的实践和需要。随后才有化学、生物学及至原本归属社会科学的心理学等学科的逐渐精确量化。因而在人们心目中,物理学应该是严密的、准确的,或者说是绝对定量化的。
但当你阅读了赵凯华的《定性与半定量物理学》之后,就会发现原来在物理学中也有诸多并非精确定量甚至仅仅是定性的东西存在。
按照作者在序中的介绍,此书最初起源于1987至1989年的北京大学物理系课程。其时CUSPEA正盛——这是当时中国大学生出国所要通过的一种考试,为李政道所倡导,是没有托福和GRE时代中国大学生留美读书的途径之一,据称当时北大物理系有一半毕业生都要经由此路踏上西行求学之途。而CUSPEA考试不似中国传统考试,较为灵活,风格清新,因而需要为学生补充大量相关知识,故有此课诞生,该书即根据当时的讲稿写成。
说起来这应该算是一部教材,但笔者却是把它当做一部科普图书来阅读的,而且这是一部相当精彩的科普图书。一来在于它与生活的紧密相关,把那些复杂遥远的物理学知识纷纷融入到普通事例当中,让我们感觉到身边原来竟有如此之多的学问和课题;二来在于它的叙述方式,不但平实质朴,而且语言鲜活,同时几乎所有的例证都来自于生活。
本书共分四章:“对称性原理”、“量纲分析”、“数量级估计”和“自然界的物理学”。通过各章内容,作者很大程度上是在教读者如何进行“估算”。
估算在实际生活中具有十分重要的意义。无论是前往某地的大致距离和时间,还是购物时针对不同品牌和商家的选择,恐怕都需要我们进行简单的估算——而且我们平时也在有意或无意地运用着这一方法。大家应该都知道“费米扔纸片”的故事:在一次原子弹实验时,费米迎风扔出一把纸片,根据纸片飞舞的速度等估计数据,大致估算出了原子弹的爆炸当量;后来科学家们进行了详细计算,发现结果与费米的估算数值相当吻合。
有些人也许会不理解:如此粗劣的估算怎么可能准确无误?难道就不会有误差存在吗?诸多的小误差难道不会造成更大的误差吗?不错,是会有误差,但有时候在这里出现的误差,在那里却会为另一个误差所弥补,因而诸多的“正”“负”误差也许刚好互相抵消,使得最终结果大致准确。当然,正确使用估算方法也需要一定的思维方法和训练手段。
在这部著作里,作者就举出了诸多估算的实例。从水滴大约在聚集到怎样的程度就会从房顶滴落,到推算整个宇宙的大致密度、质量和寿命等各种参数。而其中所使用到的数学,其实并不十分复杂。
比如有一道例题是估算地球上的山体最多能有多高。我们都知道,地球上有很多高峰,但它们不可能无限制地高下去,因为超过一定的高度,山体就会因岩石的自重而把自己压垮。因而作者根据岩石的密度等数据进行估算,得出地球上的山峰不会超过15千米。而这一数据与我们的实测数据是相吻合的,因为目前地球上的最高峰珠穆朗玛峰不过8844.43米,不足9千米。唐朝诗人王维曾有诗云:“黄河远上白云间,一片孤城万仞山”,其中“仞”为中国古制单位,没有固定的标准,大约在4至8尺之间,我们姑取其中值6尺,则“万仞”即为20千米,显然比上述估算高,可见此系诗歌的夸张手法
当初阅读此书是因中国科学院物理所的一位博士所荐。其时笔者正在创作科幻小说《蚍蜉的歌唱》,要构造一座比现有高楼还高10倍的大厦;其时纽约的世界贸易中心尚未被恐怖分子所毁,楼高不过400余米,笔者担心自己所“设计”的高厦不足以支撑自重,为识者所笑。那位博士建议笔者阅读此书,并介绍相关的估算方法,结果使笔者受益匪浅。
在仔细重读此书时,笔者正好同时在北京师范大学听讲《数学模型与数学建模》的选修课程——过去没受过这一课程的正规训练,而现在学习也不仅是为了创作上的功利性用途,而是出于一种发自内心的迷恋和喜欢。但听课之后,感觉《定性与半定量物理学》中所讨论的方法,事实上与数学建模的思想非常接近,从思维方法上而言实际上具有异曲同工之妙。只不过现在的数学建模方法,往往会辅以各种软件支持,类似Matlab之类的数学软件,能够将数学建模的结果迅速而直观地表达出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01