京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS中的T检验
1.单样本T检验(One-Sample T Test)
单样本T检验主要用于样本均数和已知总体均数的比较,还可以计算相应的描述性统计量及样本均数和总体均数之差的95%可信区间。
如果Sig(P)>0.05,差异没有显著性,可以认为抽样的均数与总体均数相同;0.01<Sig(P)<0.05,差异较显著,可以认为抽样的均数与总体均数不相同;Sig(P)<0.01,差异非常显著,可以认为抽样的均数与总体不相同。
如果求得的可信区间没有包括0,亦可说明两者间的差异有显著性意义。
2.配对样本T检验(Paired-Samples T Test)
本过程用于配对计量资料的比较,检验配对样本差值的总体均数与0的差异有无显著性差异,以及配对样本是否相关。结果输出以双侧概率及95%可信区间表示。
如积矩相关系数r=0.782(P=0.008),可以推断,该变量在处理前后正相关。
如配对t检验,t=5.273,v=9,P=0.001(双侧), 差异有显著性意义。
如差值的95%可信区间不包括0,同样说明差异有显著性意义。
1.独立样本T检验(Independent-Samples T Test)
独立样本T检验即两样本均数比较的t检验(或两样本t检验),用来检验两个独立样本的总体均数是否有显著性差异。
以两种药(甲,乙)的疗效为例,先计算两种疗效的差值。差值为反应变量(Test Variable),药物为分组变量(Grouping Variable)。
结果分析:Levene's Test for Equality of Variences:Levene 方差齐性检验,先求得各观察值与其所在组的均值之差的绝对值,然后将绝对值按分组变量做方差分析,所得F值即Leven F统计量。若P>0.05,可认为方差齐次性。该方法在非正态分布数据情形下较稳健。
Equal variances assumed:方差齐同条件下的t检验结果。如果P>0.05,差异无显著性意义,认为甲乙两药的疗效差异无显著性意义。
Equal variances assumed:方差不齐条件下的t检验结果。
2.单向方差分析(One-way ANOVA)
单向方差分析过程用于完全随机设计资料的多个样本均数比较和样本均数间的多重比较,即可进行多个处理组与一个对照组的比较。
如分析某湖中不同季节中氯化物含量的变化。季节为分类变量(Factor),氯化物为因变量(Dependent list).Post Hoc...:各组均数的多重比较。
结果分析:方差分析(Anova表),如果P<0.05,差异显著,认为不同季节中的湖水中的氯化物含量不同。
LSD检验结果:可以看出来春夏秋冬四季之间氯化物含量差异是由有显著性变化。
SNK检验和LSD检验一样可以通过P值看出来各个季节氯化物的含量是否有显著性变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30