大数据症结所在:答案太多,问题太少
在解答为何如此之多的大数据项目会失败这个方面,我最喜爱的一个例子来自于几十年前的一本书——那个时候,“大数据”的概念甚至都还没有形成。在道格拉斯·亚当斯(Douglas Adams)所著的《搭车游览银河指南》(The Hitchhiker’s Guide to the Galaxy)一书中,某个种群的生物打造了一台超级计算机来计算“生命、宇宙及所有一切”的意义。
在经过几百年的运算之后,这台计算机宣布,答案是“42”。当这个种群的生物表示反对时,这台计算机则平静地建议说,既然他们已经有了答案,现在他们需要知道的是,真正的问题到底是什么——一个需要一台更大、更复杂的计算机完成的任务。
这是有关大数据的一个绝妙的比喻,因为它反映了一个事实:数据本身是无意义的。
请记住,数据的价值并不在于数据本身——而是在于你能用数据做些什么。要使数据有用,你必须首先明白你需要什么样的数据,否则你总会想要掌握一切数据——这并不是恰当的策略,而是一种注定会失败的绝望行为。
如果你不将或无法通过数据来交付商业洞见,那为什么还要花费时间和精力去收集数据呢?你必须专注于最重要的事情上,否则你会被数据淹没。数据是一种战略性资产,仅在以建设性的恰当方式进行使用并交付结果的时候才是有价值的。
好的问题能引出更好的答案
这就是为什么从对的问题开始着手是如此重要的原因。如果你清楚自己想要达成什么目标,那么你就可以想一想你需要知道答案的问题。比如,如果你的战略是想要扩大客户基础,你希望得到答案的问题可能会包括:“我们现在的客户是哪些人?”“我们最有价值的客户构成是怎样的?”以及“我们客户的长期价值是什么?”
当你清楚了自己需要被回答的那些问题之后,找到那些为了回答这些重要问题而所需的数据就容易得多了。比如,我曾和一家小型时尚零售公司合作,这家公司除了传统销售额数据之外没有其他任何数据。他们想要增加销售额,但没有可以帮助他们达成这个目标的智能数据可以分析。我和这家公司一起找出了他们想要知道答案的那些问题,包括:
有多少人实际上经过我们门店?
有多少人停下脚步望向橱窗?他们看了多久?又有多少人在这之后走入了门店?以及有多少人进行了购买?
我们所做的,就是在门店橱窗上安装了一部小型隐蔽设备,该设备能够在顾客进入门店时追踪到手机信号。每一个带着手机经过门店的人(今时今日,应该是几乎每个人都有手机吧)都会被该设备的传感器捕捉到,然后被计数,这就有了第一个问题的答案。传感器还会计算有多少人驻足观望橱窗并且观看了多久、有多少人在之后进入了门店,另外销售额数据将记录下哪些人真正进行了购买。通过将安装在橱窗中的传感器所收集的数据及交易数据结合起来,我们就能够计算转化率,并测试橱窗布置和各种商品展示之中,哪些切实提高了转化率。
这家时装零售商不仅通过聪明地将小型传统数据和非传统大数据进行结合的方法大幅增加了销售额,还利用这其中提供的洞见关闭了一家门店,从而大大节约了成本。传感器最终告诉他们,在那家门店开张前由一家市场研究将公司所报告的人流量数据是错误的,且真正的人流量不足以支持门店继续对外营业。
太多数据反而会蒙蔽真相
现今,真正成功的公司都在基于事实和数据驱动的真知灼见来做决策。无论你是否能够获得海量数据,如果你首先制定好策略,然后奔着结果找出你需要知道答案的问题,那么你就走在了提高表现和利用数据基本力量的康庄大道上。
现在,每一位经理人都有机会来使用数据去支持自己基于事实的决策制定。不过,如果没有正确的问题,所有这些“事实”都可以将真相蒙蔽。大量数据可能会产生大量答案,而这些答案有时候并不那么重要,所以,各家公司应该专注于业务中那些尚未得到解答的较大问题,并用大数据解决之。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28