大数据症结所在:答案太多,问题太少
在解答为何如此之多的大数据项目会失败这个方面,我最喜爱的一个例子来自于几十年前的一本书——那个时候,“大数据”的概念甚至都还没有形成。在道格拉斯·亚当斯(Douglas Adams)所著的《搭车游览银河指南》(The Hitchhiker’s Guide to the Galaxy)一书中,某个种群的生物打造了一台超级计算机来计算“生命、宇宙及所有一切”的意义。
在经过几百年的运算之后,这台计算机宣布,答案是“42”。当这个种群的生物表示反对时,这台计算机则平静地建议说,既然他们已经有了答案,现在他们需要知道的是,真正的问题到底是什么——一个需要一台更大、更复杂的计算机完成的任务。
这是有关大数据的一个绝妙的比喻,因为它反映了一个事实:数据本身是无意义的。
请记住,数据的价值并不在于数据本身——而是在于你能用数据做些什么。要使数据有用,你必须首先明白你需要什么样的数据,否则你总会想要掌握一切数据——这并不是恰当的策略,而是一种注定会失败的绝望行为。
如果你不将或无法通过数据来交付商业洞见,那为什么还要花费时间和精力去收集数据呢?你必须专注于最重要的事情上,否则你会被数据淹没。数据是一种战略性资产,仅在以建设性的恰当方式进行使用并交付结果的时候才是有价值的。
好的问题能引出更好的答案
这就是为什么从对的问题开始着手是如此重要的原因。如果你清楚自己想要达成什么目标,那么你就可以想一想你需要知道答案的问题。比如,如果你的战略是想要扩大客户基础,你希望得到答案的问题可能会包括:“我们现在的客户是哪些人?”“我们最有价值的客户构成是怎样的?”以及“我们客户的长期价值是什么?”
当你清楚了自己需要被回答的那些问题之后,找到那些为了回答这些重要问题而所需的数据就容易得多了。比如,我曾和一家小型时尚零售公司合作,这家公司除了传统销售额数据之外没有其他任何数据。他们想要增加销售额,但没有可以帮助他们达成这个目标的智能数据可以分析。我和这家公司一起找出了他们想要知道答案的那些问题,包括:
有多少人实际上经过我们门店?
有多少人停下脚步望向橱窗?他们看了多久?又有多少人在这之后走入了门店?以及有多少人进行了购买?
我们所做的,就是在门店橱窗上安装了一部小型隐蔽设备,该设备能够在顾客进入门店时追踪到手机信号。每一个带着手机经过门店的人(今时今日,应该是几乎每个人都有手机吧)都会被该设备的传感器捕捉到,然后被计数,这就有了第一个问题的答案。传感器还会计算有多少人驻足观望橱窗并且观看了多久、有多少人在之后进入了门店,另外销售额数据将记录下哪些人真正进行了购买。通过将安装在橱窗中的传感器所收集的数据及交易数据结合起来,我们就能够计算转化率,并测试橱窗布置和各种商品展示之中,哪些切实提高了转化率。
这家时装零售商不仅通过聪明地将小型传统数据和非传统大数据进行结合的方法大幅增加了销售额,还利用这其中提供的洞见关闭了一家门店,从而大大节约了成本。传感器最终告诉他们,在那家门店开张前由一家市场研究将公司所报告的人流量数据是错误的,且真正的人流量不足以支持门店继续对外营业。
太多数据反而会蒙蔽真相
现今,真正成功的公司都在基于事实和数据驱动的真知灼见来做决策。无论你是否能够获得海量数据,如果你首先制定好策略,然后奔着结果找出你需要知道答案的问题,那么你就走在了提高表现和利用数据基本力量的康庄大道上。
现在,每一位经理人都有机会来使用数据去支持自己基于事实的决策制定。不过,如果没有正确的问题,所有这些“事实”都可以将真相蒙蔽。大量数据可能会产生大量答案,而这些答案有时候并不那么重要,所以,各家公司应该专注于业务中那些尚未得到解答的较大问题,并用大数据解决之。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31