如何学习基于SPSS Modeler的数据挖掘
企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,是现代企业所面临最迫切性的问题。数据挖掘(Data Mining)无疑是解决这些问题最有效的途径。
一、数据挖掘定义
从现有的大量数据中,撷取不明显、之前未知、可能有用的知识。
William Frawley & Gregory Piatetsky Shapiro, 1991
数据挖掘目的:建立起决策模型,根据过去的行动来预测未来的行为
二、数据挖掘流程(CRISP-DM)
数据挖掘不是无规律可循的,在进行数据挖掘勘探工作中,我们一般遵循CRISP-DM流程。包含商业理解-数据理解-数据前处理-数据建模-模型评估-模型发布六个步骤。整个流程围绕数据为核心,其中商业理解是产生商业价值的关键步骤,数据前处理是耗时最多的步骤,建模是关键步骤。
当然,数据挖掘的流程不是至上而下的,而是循环往复的过程,比如模型评估的结果差的情况下我们可能需要返回商业和数据理解部分。
三、主流数据挖掘工具
目前主流的数据挖掘工具分开源免费和收费两大类,其中收费软件以SAS EM和IBM SPSS Modeler、Microsoft Sql Server为代表,具有权威易用、解决方案成熟等特点。开源类软件多需要编程实现,比如Python、R。具有灵活多元、可扩展性强等特点。
四、案例展示:医疗业之临床路径预测
1.商业理解
某医院搜集了200个患有同种类型疾病病人的资料。虽然得到的是同种疾病,但是不同的病人、不同的状况,需要采取不同的用药和治疗方式。我们想透过数据挖掘的方法了解到对于不同特征(血压、胆固醇、钠钾含量)的病人给予哪种药物很适合治疗康复。
2.数据理解
DRUG1N.CSV文件,一共包含7个变量,200个观测值。目标属性为用药类型。同时选取了可能有用的解释字段,包含年龄、性别、血压、胆固醇、钠含量、钾含量。
3.数据建模
①数据探索
了解各变量对目标变量的影响,类别型变量使用条形分布图,数值型变量使用直方图。
例如通过上图我们可以看出血压在影响用药上的分布,血压高中低都会有DrugY用药,而DrugA和DrugB只会在高血压的时候出现,DrugX只会在低血压和正常的时候出现,DrugC只出现在低血压,说明血压对用药的影响在目标字段上比较明显。
通过对年龄字段的探索,我们发现DrugY和DrugX、DrugC在各个年龄段都有分布,而DrugA只出现在大概50岁以下,DrugB只出现在年龄在50岁以上。
② 决策树建模
在这里,我们使用决策树建模的方法,决策树是一种非常常用的分类预测的方法。在IBM SPSS Modeler中我们只需要调用Modelering-C5.0进行建模。
可以看出,这是一个五层的决策树,通过决策树模型运行结果,我们即可对后续的样本进行预测。
4.模型评估
接入Analysis分析节点,运行之后可以发现模型准确率为96.5%。当然,这个是使用原数据集进行建模,实际建模过程中我们还需要用到训练集和测试集拆分的方法来进行建模和评估。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31