SPSS统计基础-距离相关
该过程计算测量变量对或个案对之间相似性或不相似性(距离)的各种统计量。随后,这些相似性或距离测量可与其他过程(例如因子分析、聚类分析或多维尺度)一起使用,以帮助分析复杂的数据集。
示例。有可能基于某些特征(例如引擎大小、MPG 和马力)度量汽车对之间的相似性?通过计算汽车间的相似性,您可以了解到哪些汽车彼此相似,哪些汽车彼此不同。对更正式的分析,您可以考虑将分层聚类分析或多维尺度应用到相似性中,以探索基础结构。
获得距离矩阵
从菜单中选择:
分析> 相关> 距离...
距离:非相似性测量
从“度量”组中选择与数据类型(区间、计数或二值)相应的选项,然后,在下拉列表中选择与该数据类型相应的测量。根据数据类型,可用的测量有:
定距数据。欧氏距离、平方Euclidean 距离、Chebychev、块、Minkowski 或定制。
计数数据。卡方测量或phi 平方测量。
二分类数据。欧氏距离、平方Euclidean 距离、尺度差分、模式差分、方差、形状或Lance 和Williams。(在“存在”和“不存在”中输入值以指定哪两个值有意
义,“距离”将忽略其他所有值。)
“转换值”组允许您在计算近似性之前,为个案或变量标准化数据值。对二分类数据,这些转换不适用。可用的标准化方法有z 得分、范围–1 至1、范围0 至1、1 的最大量级、1 的均值和使标准差为1。
“转换测量”组允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1 范围。
距离:相似性测量
从“度量”组中选择与数据类型(定距或二分类)相应的选项,然后,在下拉列表中选择与该数据类型相应的测量。根据数据类型,可用的测量有:
.定距数据。Pearson 相关或余弦。
.二分类数据。Russell 和Rao、简单匹配、Jaccard、切块、Rogers 和Tanimoto、Sokal 和Sneath 1、Sokal 和Sneath 2、Sokal 和Sneath 3、Kulczynski 1、Kulczynski 2、Sokal 和Sneath 4、Hamann、Lambda、Anderberg 的D、Yule 的Y、Yule 的Q、Ochiai、Sokal 和Sneath 5、phi 4 点相关或离差。(在“存在”和“不存在”中输入值以指定哪两个值有意义,“距离”将忽略其他所有值。)
“转换值”组允许您在计算近似性之前,为个案或变量标准化数据值。对二分类数据,这些转换不适用。可用的标准化方法有z 得分、范围–1 至1、范围0 至1、1 的最大量级、1 的均值和使标准差为1。
“转换测量”组允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1 范围。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20