大数据2.0时代:释放主数据价值 推动企业增长
上海2017年7月4日电 /美通社/ -- 在数字商业时代,人们所触及之处都会产生数据,数据正在呈现着爆发式的增长。90%的数据都是在近几年内产生[1],并仍在以50%的速率增长[2]。企业也正在以新的方式在组织内部全面使用数据,从财务、人力资源、IT、销售、营销到采购等。而随着数据驱动型的决策越来越多,企业也开始面临着新的挑战,数据量及其更新速度的迅猛发展,使得本可以为我们提供洞察力的大数据,却在制造混乱。企业发现数据越来越难以为我们所用。
在近期于成都举办的一场题为“让主数据为您所用 - 释放数据价值 推动企业增长”的会议上,邓白氏中国区CEO 黄超群女士提出,“我们已经进入了大数据2.0的时代,企业不应再去追逐获取更多的数据,而应让公司内部的主数据尽其所用,充分释放价值。”
作为在中国拥有两家子公司 - 华夏邓白氏和微码邓白氏的邓白氏集团深谙企业在运用数据推动业务发展方面的痛点。如今,无论是初创型还是跨国企业,都在经历相似的挑战:不同部门、地区的系统、工作流程,市场策略或供应商关系管理等相互脱节、缺乏交互,并随之产生了使用着不同定义、缺乏内部标准的多个数据源,且无法实时更新,进而形成了一个个信息孤岛。
鉴于这种情况,行之有效的解决方案就是在整个企业上下采用“通用语言”,确保内部系统无缝互通,这个“通用语言”便是主数据。这是具有高业务价值、可在企业内部跨越各个业务部门被重复使用的数据,是统一、准确、权威的数据来源,可以给予企业统一化的视角,360度审视所拥有的所有业务关系。
主数据:企业的基石
“就如同建筑结构一样,企业这座‘大厦’要获得长足发展,必须打好地基,这个地基就是主数据。”邓白氏中国区市场总监姚文捷在会上说道。而对于主数据战略,企业目前仍面临重重挑战,研究显示,47%的企业为数据分析能力不足而困扰,42%的企业认为数据存储于太多独立的系统中,39%的企业拥有数据质量问题的挑战[3]。缺乏良好数据管理的企业还将经历长时间的阵痛才能将数据转化为价值。
根据邓白氏的经验,主数据战略应帮助企业解决四个方面的难题:实现数据的标准化管理、打通企业的业务生态圈、数据深度及广度,及确保数据的时效性和可靠性。
标准结构作为开启主数据战略的第一步,企业首先需要对使用了多重定义的数据进行标准化,使得它们相互之间可以被关联和整合。这就需要一套独一无二的编码系统,将每一个数据记录进行编码,即将数据“结构化”的过程。邓白氏独创的邓氏编码(D-U-N-S
®Number)作为一个独一无二的由9位数字组成的全球编码系统,就被广泛应用于企业识别、商业信息的组织、归集与整理,并可通过家族树清晰呈现出企业自身的多层级关系及外部关联关系。
有效互联经历了“结构化”的数据进而通过关联和匹配的技术,不仅可帮助企业清洗数据库中的重复、有歧义的数据记录,还可以由此打通企业内部及外部的各套系统,最终帮助企业获得一套反映跨越不同部门及地区的业务关系视图的主数据,它可被纳入到整个业务生态圈中的各个部门及环节的运营管理中,帮助各部门捕捉业务关系中的风险及机遇,并提升企业各个环节的效率。
全面覆盖企业还可以借助邓白氏的拥有2.75亿家企业数据档案及海量企业深度特征数据的全球数据库,对企业自身的数据库进行补全,从而可以获得其主数据的全球广度及本地深度,满足业务版图广泛覆盖的数据要求。
高效维护主数据管理并非一劳永逸,相反,它是一个持续性的过程。因为只有确保数据质量时刻都具备时效性和准确性,主数据实施才具有意义。这便需要高效的数据治理过程对数据质量进行维护。邓白氏超过3万个数据源、平均每日数据更新500万次的数据库,以及独特的DUNSRight
®信息质量管理流程,加上覆盖全球各地的商业信息供应网络,不仅可使企业的数据被及时更新,还可确保数据的收集、维护及使用合法合规。
目前,邓白氏在帮助企业实施主数据战略并将其运用到企业的各个职能部门(IT、销售、市场、财务、采购、合规等),提升各职能部门效率方面已有颇多成功案例。据全球知名市场研究公司Forrester公司近期的调研显示,实施了主数据战略的企业平均可将合规尽职调查时间缩短50%,将供应链风险降低30%,将销售效率目标精准率提高20-30%等。凭借母公司在主数据领域的技术专长,结合在本土市场的经验,邓白氏在华子公司华夏邓白氏及微码邓白氏帮助中国企业提升信用、合规及供应链风险管理效率,同时提升市场营销效率、加速销售周期。
“主数据战略是企业增长的推进器。它是水之于管道,燃料之于汽车。没有前者,后者则毫无意义。毋庸置疑,在瞬息万变的商业环境中,我们应当充分挖掘主数据的价值,并快速转化成企业独到的竞争优势。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31