大数据2.0时代:释放主数据价值 推动企业增长
上海2017年7月4日电 /美通社/ -- 在数字商业时代,人们所触及之处都会产生数据,数据正在呈现着爆发式的增长。90%的数据都是在近几年内产生[1],并仍在以50%的速率增长[2]。企业也正在以新的方式在组织内部全面使用数据,从财务、人力资源、IT、销售、营销到采购等。而随着数据驱动型的决策越来越多,企业也开始面临着新的挑战,数据量及其更新速度的迅猛发展,使得本可以为我们提供洞察力的大数据,却在制造混乱。企业发现数据越来越难以为我们所用。
在近期于成都举办的一场题为“让主数据为您所用 - 释放数据价值 推动企业增长”的会议上,邓白氏中国区CEO 黄超群女士提出,“我们已经进入了大数据2.0的时代,企业不应再去追逐获取更多的数据,而应让公司内部的主数据尽其所用,充分释放价值。”
作为在中国拥有两家子公司 - 华夏邓白氏和微码邓白氏的邓白氏集团深谙企业在运用数据推动业务发展方面的痛点。如今,无论是初创型还是跨国企业,都在经历相似的挑战:不同部门、地区的系统、工作流程,市场策略或供应商关系管理等相互脱节、缺乏交互,并随之产生了使用着不同定义、缺乏内部标准的多个数据源,且无法实时更新,进而形成了一个个信息孤岛。
鉴于这种情况,行之有效的解决方案就是在整个企业上下采用“通用语言”,确保内部系统无缝互通,这个“通用语言”便是主数据。这是具有高业务价值、可在企业内部跨越各个业务部门被重复使用的数据,是统一、准确、权威的数据来源,可以给予企业统一化的视角,360度审视所拥有的所有业务关系。
主数据:企业的基石
“就如同建筑结构一样,企业这座‘大厦’要获得长足发展,必须打好地基,这个地基就是主数据。”邓白氏中国区市场总监姚文捷在会上说道。而对于主数据战略,企业目前仍面临重重挑战,研究显示,47%的企业为数据分析能力不足而困扰,42%的企业认为数据存储于太多独立的系统中,39%的企业拥有数据质量问题的挑战[3]。缺乏良好数据管理的企业还将经历长时间的阵痛才能将数据转化为价值。
根据邓白氏的经验,主数据战略应帮助企业解决四个方面的难题:实现数据的标准化管理、打通企业的业务生态圈、数据深度及广度,及确保数据的时效性和可靠性。
标准结构作为开启主数据战略的第一步,企业首先需要对使用了多重定义的数据进行标准化,使得它们相互之间可以被关联和整合。这就需要一套独一无二的编码系统,将每一个数据记录进行编码,即将数据“结构化”的过程。邓白氏独创的邓氏编码(D-U-N-S
®Number)作为一个独一无二的由9位数字组成的全球编码系统,就被广泛应用于企业识别、商业信息的组织、归集与整理,并可通过家族树清晰呈现出企业自身的多层级关系及外部关联关系。
有效互联经历了“结构化”的数据进而通过关联和匹配的技术,不仅可帮助企业清洗数据库中的重复、有歧义的数据记录,还可以由此打通企业内部及外部的各套系统,最终帮助企业获得一套反映跨越不同部门及地区的业务关系视图的主数据,它可被纳入到整个业务生态圈中的各个部门及环节的运营管理中,帮助各部门捕捉业务关系中的风险及机遇,并提升企业各个环节的效率。
全面覆盖企业还可以借助邓白氏的拥有2.75亿家企业数据档案及海量企业深度特征数据的全球数据库,对企业自身的数据库进行补全,从而可以获得其主数据的全球广度及本地深度,满足业务版图广泛覆盖的数据要求。
高效维护主数据管理并非一劳永逸,相反,它是一个持续性的过程。因为只有确保数据质量时刻都具备时效性和准确性,主数据实施才具有意义。这便需要高效的数据治理过程对数据质量进行维护。邓白氏超过3万个数据源、平均每日数据更新500万次的数据库,以及独特的DUNSRight
®信息质量管理流程,加上覆盖全球各地的商业信息供应网络,不仅可使企业的数据被及时更新,还可确保数据的收集、维护及使用合法合规。
目前,邓白氏在帮助企业实施主数据战略并将其运用到企业的各个职能部门(IT、销售、市场、财务、采购、合规等),提升各职能部门效率方面已有颇多成功案例。据全球知名市场研究公司Forrester公司近期的调研显示,实施了主数据战略的企业平均可将合规尽职调查时间缩短50%,将供应链风险降低30%,将销售效率目标精准率提高20-30%等。凭借母公司在主数据领域的技术专长,结合在本土市场的经验,邓白氏在华子公司华夏邓白氏及微码邓白氏帮助中国企业提升信用、合规及供应链风险管理效率,同时提升市场营销效率、加速销售周期。
“主数据战略是企业增长的推进器。它是水之于管道,燃料之于汽车。没有前者,后者则毫无意义。毋庸置疑,在瞬息万变的商业环境中,我们应当充分挖掘主数据的价值,并快速转化成企业独到的竞争优势。”
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13