数据分析实例--R语言如何对垃圾邮件进行分类
Structure of a Data Analysis
1 数据分析的步骤
l Define the question
l Define the ideal data set
l Determine what data you can access
l Obtain the data
l Clean the data
l Exploratory data analysis
l Statistical prediction/model
l Interpret results
l Challenge results
l Synthesize/write up results
l Create reproducible code
2 A sample
1) 问题.
Can I automatically detect emails that are SPAM or not?
2) 具体化问题
Can I use quantitative characteristics of the emails to classify them as SPAM/HAM?
3) 获取数据
http://search.r-project.org/library/kernlab/html/spam.html
4) 取样
#if it isn't installed,please install the package first.
library(kernlab)
data(spam)
#perform the subsampling
set.seed(3435)
trainIndicator =rbinom(4601,size = 1,prob = 0.5)
table(trainIndicator)
trainSpam = spam[trainIndicator == 1, ]
testSpam = spam[trainIndicator == 0, ]
5) 初步分析
a) Names:查看的列名
names(trainSpam)
b) Head:查看前六行
head(trainSpam)
c) Summaries:汇总
table(trainSpam$type)
d) Plots:画图,查看垃圾邮件及非垃圾邮件的分布
plot(trainSpam$capitalAve ~ trainSpam$type)
上图分布不明显,我们取对数后,再看看
plot(log10(trainSpam$capitalAve + 1) ~ trainSpam$type)
e) 寻找预测的内在关系
plot(log10(trainSpam[, 1:4] + 1))
hCluster = hclust(dist(t(trainSpam[, 1:57])))
plot(hCluster)
太乱了.不能发现些什么。老方法不是取log看看
hClusterUpdated = hclust(dist(t(log10(trainSpam[, 1:55] + 1))))
plot(hClusterUpdated)
6) 统计预测及建模
trainSpam$numType = as.numeric(trainSpam$type) - 1
costFunction = function(x, y) sum(x != (y > 0.5))
cvError = rep(NA, 55)
library(boot)
for (i in 1:55) {
lmFormula = reformulate(names(trainSpam)[i], response = "numType")
glmFit = glm(lmFormula, family = "binomial", data = trainSpam)
cvError[i] = cv.glm(trainSpam, glmFit, costFunction, 2)$delta[2]
}
## Which predictor has minimum cross-validated error?
names(trainSpam)[which.min(cvError)]
7) 检测
## Use the best model from the group
predictionModel = glm(numType ~ charDollar, family = "binomial", data = trainSpam)
## Get predictions on the test set
predictionTest = predict(predictionModel, testSpam)
predictedSpam = rep("nonspam", dim(testSpam)[1])
## Classify as `spam' for those with prob > 0.5
predictedSpam[predictionModel$fitted > 0.5] = "spam"
## Classification table 查看分类结果
table(predictedSpam, testSpam$type)
分类错误率:0.2243 =(61 + 458)/(1346 + 458 + 61 + 449)
8) Interpret results(结果解释)
The fraction of charcters that are dollar signs can be used to predict if an email is Spam
Anything with more than 6.6% dollar signs is classified as Spam
More dollar signs always means more Spam under our prediction
Our test set error rate was 22.4%
9) Challenge results
10) Synthesize/write up results
11) Create reproducible code
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21