生命大数据将进入寻常百姓生活
人的一生,简单的讲,不外乎“生老病死”。我们能抗争的、个体差异最大的就是“病”了。几千年文化、知识、技术、经验的累积,人类对自身健康状况的了解以及疾病干预的能力都大大提高。然而,我们对自身健康的掌控能力离预期还远远不够,面对各类疾病缺少深入的了解、精细的分类和有针对性的治疗。
旨在正确的时间,给正确的人,使用正确的药物的“精准医疗”应运而生。获取和掌握组学、临床信息等生命大数据里包含的海量信息是医疗迈向精准的重要前提。生命大数据的累积和挖掘将逐步揭示健康与疾病的全景关联图。
生命大数据支撑精准医学研究
人类基因组计划(human genome project,HGP)、基因组单体型图计划(hapmapproject)、全基因组关联分析(genome-wide association study,GWAS)、DNA元件百科全书(encyclopedia of DNA elements,ENCODE)、表观路线图(NIH roadmap epigenomics)等大型组学计划的顺利完成,带动了生命科学领域的重大变革。
高通量测序、高性能质谱等组学技术得以快速发展,生命科学研究产生了大量有价值的包括基因组学、转录组学、蛋白质组学、代谢组学等在内的“生物大数据”。整合分析多重组学数据和临床资料,构建健康与疾病的知识网络,将有望对疾病发展和不同病理状态进行更加准确的分类,为不同遗传背景的患者提供个体化诊断及精准治疗。
很显然,科学家们都已经意识到各类生命大数据的重要作用。然而,以上重要的大型组学计划均由欧美国家发起,获得的数据主要基于欧美人群。中国人口众多,遗传背景与欧美人群有较大差异。实现中国人民的精准医疗,则需要中国人群的生命大数据来推动。
中科院在2015年启动重点部署项目“中国人群精准医学研究计划”,将在4年内完成4000名志愿者的DNA样本和多种表现型数据的采集,并对其中2000人进行深入的精准医学研究,包括全基因组序列分析,建立基因组健康档案,针对一些重要慢性病的遗传信号开展疾病风险和药物反应的预警和干预研究。这些数据将会成为非常宝贵的中国人群遗传信息资源。
科技部于2016年3月8日公布《关于发布国家重点研发计划精准医学研究等重点专项2016年度项目申报指南的通知》,拉开了精准医疗重大专项科研行动的序幕。本年度的科研专项包括构建百万人以上的自然人群国家大型健康队列和重大疾病专病队列,建立生物医学大数据共享平台等。
在国家战略需求层面,生命大数据研究正如火如荼的开展起来,为精准医学研究打下基础。这一系列大数据项目的开展,将建设一套符合我国国情的生命大数据的获取、分析、存储、使用等规范;多个与健康相关的中国人群生命大数据知识库;面向科研人员和医务工作者的友好共享数据平台等等。基于这些大数据挖掘生命动态规律,将是通向精准医疗的重要基石。
综合组学大数据和临床大数据挖掘生命规律
生命大数据包含的种类繁多,包括基因组、转录组、蛋白组、表观组、宏基因组等各类组学数据和影像、生化指标、标型特征等各类临床数据。我国各类组学数据主要产生于科研院所和高校,临床数据主要来源于各类医疗机构。
整合多类数据,挖掘深层机制无疑是行之有效的方法。过去的整合分析主要是限于各类组学数据内部,例如综合组蛋白修饰数据、转录组数据和染色质相互作用数据筛查全基因组范围内的顺式作用元件。当面对精准医疗,需要明确疾病的不同亚型及对应的分子机制,以及合适的治疗方案,大数据在整合分析、挖掘时则必须要加上临床大数据。
在2016年,多家科研机构和医疗机构联合起来,共同攻关生命大数据:
中科院北京基因组研究所联合中科院生物物理研究所、浙江大学、复旦大学、国家卫计委信息统计中心、北大人民医院、中南大学湘雅医院系统等构建精准医学大数据处理和利用的标准化技术体系。
军事医学科学院放射与辐射医学研究所联合多家机构构建精准医学大数据管理和共享技术平台。
少量生命大数据的研究成果已经进入普通百姓的视野
在媒体的大力宣传下,大数据和精准医疗的概念已出现在普通百姓的生活中。一些基于生命大数据的成果已经被用到普通消费者身上,最为常见的就是基因检测了。
通过对具有特定特征(如患某种疾病)的人群和对照人群进行遗传物质的对比和关联研究,可挖掘出一些与该特征相关的基因位点。一些商业公司将同类疾病的不同研究结果综合起来,评估消费者患某类疾病的风险。这被认为是一个很酷、有用、拥有巨大商业前景的行业,因此近一两年内成立了许多面向普通消费者的基因检测公司。
“十三五”期间的生命大数据
我国的精准医疗从今年开始落地实施,研究内容涉及到大规模人群队列研究和精准医学大数据研究。可以预见,在三到五年内,将会产生大量中国人群的各类生命大数据以及对应的知识注释。
一方面,这些大数据将有望打破欧美国家对生命大数据的垄断,形成世界范围内的新布局;同时,将有力推动我国生命科学研究和健康事业;此外,阶段性的成果也可能会被单独拿出来,直接走向面对普通消费者的商业模式中(就像基因检测一样)。
伴随着美好愿景的,也一定还有潜在问题:
1、我国还缺乏一个国家级的、被广大科研人员认可的数据存储、使用、共享平台;
2、大数据的安全与管理也是重中之重;
3、各类公司带着一些成果直接面向普通消费者,但缺乏统一、可用的行业标准,不当的基因解读有可能伤害一些消费者,造成普通百姓对大数据行业的误解。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13