互联网金融未来的核心在于大数据挖掘
时下,查询实时交通路况几乎成为我们出行前必不可少的事情,而这些躲避拥堵的方案真的是实时监控反馈的吗?答案当然是否定的,它主要在于数据分析,即通过带GPS功能的手机以及其他移动设备收集位置信息和移动速度信息,并加以计算转换成拥堵信息。
事实上,这样的技术在制造业、零售业、信息技术服务业等领域已经逐步显现出重要性。例如,2015年大数据推动工业4.0时代,将6+1制造升级进化为4+1模式,能将产品设计与制造进行捆绑,将中意的产品直接送上门,而且电商还能根据我们使用过的信息数据建立起不同的算法,预测我们的个人喜好,为不同用户给出各自关联的搜索结果。由此看来,算法时代真的来临了。
那么,在金融领域,我们正在面临或即将面临怎样的改变呢?企业精准营销、集团业态整合、产品零售、交叉销售等都需要大数据的发挥,大数据不仅成为全球各国争相发展的技术之一,也是我国各行业领域正在加速提升的技术服务。
看点
01大数据的步伐蔓延开来
从信息时代到算法时代,“互联网+”的出现如同催化剂一般发挥着它独有的功效,让信息不对等的状态逐步向市场化、功能化的方向演变,使得大数据能够以数据平台形式,在日益先进的管理技术下,得到越来越高品质的数据仓库,并以各种不同的数据服务模式提供信息服务,为用户带来不断优化的体验。这得益于互联网记录和传播特质所带来的高效信息共享,庞大的数据信息以及各关联信息的挂项整合具有极高的价值,而且大数据本身就能创造巨大的财富。
更值得关注的是,大数据技术的战略意义不在于掌握庞大的数据信息,而是对这些含有意义的数据进行专业化处理,提高对数据的“加工能力”,通过加工实现数据的增值,这样的数据挖掘才是评价数据服务的真正标准。因此,强大的数据分析能力将成为未来紧缺的顶尖专业技术,高超的数据分析公式创建人员也将成为未来炙手可热的尖端技术人才,使企业之间的竞争明确锁定到数据获取、数据仓库、数据分析等技术上。
总之,忽略大数据,就会被时代抛弃,每个领域都需要致力去运用大数据。与此同时,大数据也离不开云计算,还需要AI的加入,而且作为云计算的杀手级应用,AI也正成为下一个大趋势。
看点
02大数据在金融业的应用
在制造业领域中,工业3.0时代所用的市场调研、问卷回馈早已落后被淘汰。如今,在大数据带动的工业4.0时代,消费者的行为可通过数据分析出来,形成完整的订单处理、产品设计制造、原料采购和终端零售组合的环形运作。若真如IBM分析研究所说,63%的零售企业会因为使用大数据而增强竞争力,并且依据麦肯锡的预测,使用大数据可使利润增加60%以上。那么,大数据在金融业领域中是如何应用的呢?
银行、保险业的运用
金融业对大数据的应用最早在银行业反欺诈工作中就有了诸多体现,银行业通常借助用户行为风险识别引擎、征信系统、黑名单系统等反欺诈系统,对交易诈骗、网络诈骗、电话诈骗、盗卡盗号等欺诈行为进行识别。其中,在线反欺诈是互联网金融必不可少的一部分,这其中必然用到数据采集、数据库等大数据技术,也从而让银行业成为金融业中运用大数据相对成熟的代表。
当然,保险业在风险管理、价值管理、资产管理、微信系统、移动展业系统、非现场审计系统、CRM系统,以及XBRL报送、数据中心、运营数据服务平台上都有了较为成熟的产品和应用。
证券、期货业的运用
相对来说,大数据在证券和期货业的应用滞后许多。据证券市场已成功建设90%数据仓库的实力数据服务商透露,截至目前,证券业接触过并已经在运用大数据的企业不足20家,这些企业所涉猎的应用也大多与银行业、保险业相似,主要集中在风险管理、经营分析、XBRL报送及数据中心和数据挖掘方面,CRM、ACRM、高端客户CRM方面更多的是传统数据仓库形式。
然而,大数据单纯在期货业中的应用少之又少,两家交易所和个别期货公司现阶段会考虑到这样的规划部署,半数能实现CRM或少数实现ACRM的内部数据分析和挖掘已然是当下领先的水平了,毕竟期货特殊的交易特征致使其交易数据分析远比证券交易数据分析更难攻克。
基金、信托业的运用
基金管理公司可通过建设数据仓库和BI决策分析系统,更及时、准确地掌握自身经营状况,从而有效提高管理水平,但是目前很少有建设数据仓库项目的,基本上只是在XBRL报送上多做一些。目前,私募的XBRL报送开始逐步启动起来,信托领域中做XBRL报送的只有个别家,极少有建设数据仓库和大数据的。
大数据在金融业的走向
由此可见,金融业对大数据的应用虽不及制造业那般迅猛,但是也正快速伴随着互联网金融的步伐蔓延开来。更明显的特征是,集团化业态趋势愈来愈明显,企业并购重组现象也时有发生。这样一来,能够最大限度地满足市场投资者需求,从而促使各类型业务多元化组合。尤其是对具备银行背景、券商背景等多层交互支持的企业来说,大数据的应用将助推其在目标业务领域及综合服务管理上有出色的表现。因此,未来更多贴合客户的服务和产品能够被定制,市场也能够被充分整合。对客户单一业务的个性化投资建议、综合业务的结构性产品匹配、跨类型业务的交叉销售等,都将具备更优质的深度挖掘,市场结构和各层资源也将得到更合理的分配。
总之,大数据分析是金融业客户关系管理的发展方向,是未来新型精准营销的发展方向。随着金融业集团性的转化,实施多元化经营战略的企业集团更看重对大数据的分析和解读,以更好地满足新客户引流、存量客户挖掘以及防止客户流失,从而促进BI业务的成功,获得更佳决策,使得金融业集团间的竞争更具技术性和品牌特色。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21