数据分析师用r语言做数据分析的时候会很多,也有很多数据分析师对于用r语言不是很了解,下面就谈论一下?
线性回归简介:如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点。线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值。而我们要做的就是找出一条合适的曲线,也就是找出合适的斜率及纵截矩。
SSE & RMSE
上图中的SSE指sum of squared error,也即预测值与实际值之差的平方和,可由此判断该模型的误差。但使用SSE表征模型的误差有些弊端,比如它依赖于点的个数,且不好定其单位。所以我们有另外一个值去称量模型的误差。RMSE(Root-Mean-Square Error)。
由N将其标准化,并且其单位与变量单位相同。
案例
许多研究表明,全球平均气温在过去几十年中有所升高,以此引起的海平面上升和极端天气频现将会影响无数人。本文所讲案例就试图研究全球平均气温与一些其它因素的关系。
本例我们以1983年5月到2006年12月的数据作为训练数据集,以之后的数据作为测试数据集。
数据
首先加载数据
temp <- read.csv("climate_change.csv")
数据解释
Year 年份 M
Month 月份 T
emp 当前周期内的全球平均气温与一个参考值之差
CO2, N2O,CH4,CFC.11,CFC.12:这几个气体的大气浓度 Aerosols
线性回归模型保留两部分。
"数据分析师'选择目标feature。我们数据中,有多个feature,但并非所有的feature都对预测有帮助,或者并非所有的feature都需要一起工作来做预测,因此我们需要筛选出最小的最能预测出接近事实的feature组合。
确定feature系数(coefficient)。feature选出来后,我们要确定每个feature对预测结果所占的权重,这个权重即为coefficient
结合实例选择模型
初始选择所有feature
选择所有feature作为第一个model1,并使用summary函数算出其Adjusted R2为0.7371。
model1 <- lm(Temp ~ MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols, temp) summary(model1)
逐一去掉feature
在model1中去掉任一个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6373 |
MEI + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7331 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.738 |
MEI + CO2 + CH4 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CH4 + N2O + CFC.12 + TSI + Aerosols |
0.7163 |
MEI + CO2 + CH4 + N2O + CFC.11 + TSI + Aerosols |
0.7172 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + Aerosols |
0.697 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI |
0.6883 |
本轮得到Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
从model2中任意去掉1个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6377 |
MEI + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7346 |
MEI + CO2 + N2O + CFC.12 + TSI + Aerosols |
0.7171 |
MEI + CO2 + N2O + CFC.11 + TSI + Aerosols |
0.7166 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + Aerosols |
0.698 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI |
0.6891 |
任一组合的Adjusted R2都比上一轮小,因此选择上一轮的feature组合作为最终的模型,也即Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
由summary(model2)可算出每个feature的coefficient如下 。
线性回归介绍
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
上面这段定义来自于维基百科。
这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2m是为了在求导的时候,这个系数就不见了。至于为何选择平方和作为错误估计函数,就得从概率分布的角度来解释了。
如何调整θ以使得J(θ)取得最小值有很多方法,本文会重点介绍梯度下降法和正规方程法。
在选定线性回归模型后,只需要确定参数θ,就可以将模型用来预测。然而θ需要使得J(θ)最小。因此问题归结为求极小值问题。
梯度下降法流程如下:
1. 首先对θ赋值,这个值可以是随机的,也可以让θ为一个全零向量。
2. 改变θ的值,使得J(θ)按梯度下降的方向进行调整。
梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。更新公式为为:
这种方法需要对全部的训练数据求得误差后再对θ进行更新。(α为学习速度)
正规方程(Normal Equation)数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10