
数据分析师用r语言做数据分析的时候会很多,也有很多数据分析师对于用r语言不是很了解,下面就谈论一下?
线性回归简介:如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点。线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值。而我们要做的就是找出一条合适的曲线,也就是找出合适的斜率及纵截矩。
SSE & RMSE
上图中的SSE指sum of squared error,也即预测值与实际值之差的平方和,可由此判断该模型的误差。但使用SSE表征模型的误差有些弊端,比如它依赖于点的个数,且不好定其单位。所以我们有另外一个值去称量模型的误差。RMSE(Root-Mean-Square Error)。
由N将其标准化,并且其单位与变量单位相同。
案例
许多研究表明,全球平均气温在过去几十年中有所升高,以此引起的海平面上升和极端天气频现将会影响无数人。本文所讲案例就试图研究全球平均气温与一些其它因素的关系。
本例我们以1983年5月到2006年12月的数据作为训练数据集,以之后的数据作为测试数据集。
数据
首先加载数据
temp <- read.csv("climate_change.csv")
数据解释
Year 年份 M
Month 月份 T
emp 当前周期内的全球平均气温与一个参考值之差
CO2, N2O,CH4,CFC.11,CFC.12:这几个气体的大气浓度 Aerosols
线性回归模型保留两部分。
"数据分析师'选择目标feature。我们数据中,有多个feature,但并非所有的feature都对预测有帮助,或者并非所有的feature都需要一起工作来做预测,因此我们需要筛选出最小的最能预测出接近事实的feature组合。
确定feature系数(coefficient)。feature选出来后,我们要确定每个feature对预测结果所占的权重,这个权重即为coefficient
结合实例选择模型
初始选择所有feature
选择所有feature作为第一个model1,并使用summary函数算出其Adjusted R2为0.7371。
model1 <- lm(Temp ~ MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols, temp) summary(model1)
逐一去掉feature
在model1中去掉任一个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6373 |
MEI + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7331 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.738 |
MEI + CO2 + CH4 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CH4 + N2O + CFC.12 + TSI + Aerosols |
0.7163 |
MEI + CO2 + CH4 + N2O + CFC.11 + TSI + Aerosols |
0.7172 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + Aerosols |
0.697 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI |
0.6883 |
本轮得到Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
从model2中任意去掉1个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6377 |
MEI + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7346 |
MEI + CO2 + N2O + CFC.12 + TSI + Aerosols |
0.7171 |
MEI + CO2 + N2O + CFC.11 + TSI + Aerosols |
0.7166 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + Aerosols |
0.698 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI |
0.6891 |
任一组合的Adjusted R2都比上一轮小,因此选择上一轮的feature组合作为最终的模型,也即Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
由summary(model2)可算出每个feature的coefficient如下 。
线性回归介绍
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
上面这段定义来自于维基百科。
这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2m是为了在求导的时候,这个系数就不见了。至于为何选择平方和作为错误估计函数,就得从概率分布的角度来解释了。
如何调整θ以使得J(θ)取得最小值有很多方法,本文会重点介绍梯度下降法和正规方程法。
在选定线性回归模型后,只需要确定参数θ,就可以将模型用来预测。然而θ需要使得J(θ)最小。因此问题归结为求极小值问题。
梯度下降法流程如下:
1. 首先对θ赋值,这个值可以是随机的,也可以让θ为一个全零向量。
2. 改变θ的值,使得J(θ)按梯度下降的方向进行调整。
梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。更新公式为为:
这种方法需要对全部的训练数据求得误差后再对θ进行更新。(α为学习速度)
正规方程(Normal Equation)数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09