如何将大数据利用好
到如今,多数创业者都理解了大数据的概念。这个庞大的数据集包含了企业每日业务流程所催生的数字——销售统计数据、电子邮件开启率、网站点阅率等等,帮你洞悉客户行为和客户欲望。
数据和分析数据所需的工具都唾手可得,但这种便利也是一柄双刃剑:若太过依赖大数据,我们也许会忽略强大(而且通常十分准确)的直觉,因为它根本无法量化。针对这个问题,来自青年企业家理事会(YEC)的12位创业者提供了如下洞见,告诉我们如何利用大数据,而不盲从数字,不至于所有商业决策都任凭大数据的摆布。
让大数据充当向导,而非指挥官
大数据固然不错,但在为品牌做决策时,我们不能唯大数据马首是瞻。肯定有一种综合的解决方案,能将大数据和“直觉判断”有效结合起来。我得以在数据的指引下,为品牌吸引到新的客户,但我和读者联络、互动的方式是由我自己裁量的,不会受制于大数据的摆布。
为数据负责,但也要切合实际
人孰无过,但数据有时也能误人。这种现实主义融入了我所有的决策之中。这样一来,我在对数据负责的同时,也能对数据的真正含义保持适当的怀疑态度。
——曼佩里·辛格(Manpreet Singh),TalkLoCAl
记住,数据是投资回报(ROI)中的一部分
大数据有它的一席之地,它简化了几十年来的记录与研究。但它并非万无一失,在观察数据趋势与预测时,不要忽略其他能影响结果、干扰数据流的众多因素。大数据仅仅是整体ROI的一小部分。
——马修·卡帕拉(MATthew Capala),Search Decoder
理解企业的数据需求
这取决于你的业务类型。你要考虑你的大数据是否是轻易获得的;其测量是准确的,还是为人类失误留出了余地;你调查的是观点、事实还是数据。不要还没考虑这些问题,就过度依赖于数据,把直觉束之高阁——这是你的业务,最清楚它的人应该是你。
——凯文·康纳(Kevin Conner),Vast BridGEs
寻找模式和趋势
用它迅速查阅大量数据,以揭示隐藏的规律、未知的联系、市场趋势、顾客偏好等等有用的商业信息。这样一来,我们就能预计客户需求或欲望,由此改进服务,或是在问题出现之前,就将其查明并削弱,由此改进管理决策。
——路易吉·维维格(Luigi Wewege),Vivier Group
清楚数据的局限
我们想方设法地让数据指引我们,而不是由我们去指引数据,因为在估值这样一个领域,数据和直觉之间的互动并不十分理想。我们不断加入新的数据可视图与解释,树立基准,并在数据表现出不足时意识到问题。
——托马斯·斯梅尔(Thomas Smale),FE International
树立基准
在推行了“数据为先”的策略之后,我们的关键绩效指标(KPI)就开始稳步提升,成效喜人。我们也不会盲目地信任大数据。我们将先前的销售数据作为评估的依据。我们发现有一点十分重要,那就是知道模型的预测能力的局限。
——伊斯梅尔·威克斯(Ismael Wrixen),FE International
着眼于背后的细节
要看到大数据背后的细节。无论做什么决定,都要基于这些细节来做。
——戴西·景(Daisy Jing),BAnish
在定性与定量之间找到平衡点
我们总会将定量数据洞察(衡量指标、调查、服务器日志数据)与定性反馈(调查、采访、用户研究等)结合起来。这使我们得出更加全面的观点、做出最为明智的决定。数据也有误导决策的时候,因为它们只是其中一个方面。
——阿德林·周(Adelyn Zhou),TOPBOTS
专注于收购优质数据
数据也有优劣之分。兜售原始数据、分析工具和仪表盘工具——旨在将机器学习与人工智能相结合——的公司有的是。重点之一是收购优质、可靠的数据;这样,之后的决策就会水到渠成。
——莱恩·布拉德利(Ryan Bradley),KOester &; Bradley, LLP
梳理数据,找出真正的潜在客户
凭借大数据,我的公司和销售队伍得以了解并预测人们的行为,比如人们在何处网购、购置何物;以及预测未来几个月内,他们会搬到何处。由此,我的销售团队得以找出潜在顾客——真正有望购买产品或服务的顾客,以及向他们推销的最佳时机。
——约翰·丹尼尔(John Daniel),Innovator John
让数据证明或证伪你的直觉
直觉告诉我们,登录页的某些设计看着不错,效果应该很好。但只有等数据大量涌入之后,我们才能看到实际的效果,以及这些设计的强项和弱项。要判断这些猜测是否准确,数字是最有发言权的。在数据的引导下,我们将就内容的去留作出合适的决策。
——杰森·阿波尔鲍姆(Jason APPlebaum),EagerMedia
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21