SPSS分析技术:简单对应分析
分类型数据(包括定类数据和定序数据)在数据分析中扮演着重要的角色,例如,分类型数据能够帮助我们对每个数据记录进行分门别类,但是由于分类型数据的特点,很多基于均值、方差和标准差的分析方法就不太适用了,通常使用的分析方法是基于频数的卡方检验和逻辑回归等。面对变量个数少、分类类别少的简单局面,卡方检验和二分类逻辑回归还能够从容应对,一旦变量数量和变量类别多时,分析结果的解读就让人头痛了。
例如,研究全国34个省级行政区居民的收入水平情况,通过抽样收集数据,使用卡方检验能够很容易得出不同省级行政区居民的收入水平分布有显著性差异,但是无法得到北京市高收入居民比例高、云南低收入居民比例低这样具体的结果,也就是无法对分类变量各类别间的相关关系进行清楚展现。对应分析是解决类别相关关系展示很好的方法,它能够将分类交叉表转换为相应的对应分析图,从而使分类结果图形化、直观化。
对应分析原理
数据统计分析方法有个很有趣的特点,就是名字很多,经常出现同一个分析方法在不同书籍中的名称不同,真有点百家争鸣的味道,这是因为由人组成的社会,人们总是希望自己能够青史留名,这不足为奇。对应分析在很多地方也被称为同质性分析或数量化方法。
对应分析的实质就是将交叉表里面的频数数据作变换以后,展现在散点图上,从而将抽象的交叉表信息形象化。这个变换过程涉及到线性代数的内容,因此在这里就不做数学公式的推导了,草堂君在这里做个形象的解释。
我们以两个分类变量的情况来介绍对应分析的原理。学习过卡方检验的朋友应该知道,卡方检验的实质是将实际的频数分析与期望频数作对比,如果差距很大,超过界限值,那么就可以认为组成交叉表的两个分类变量之间具有相关性。举个生活例子,某汽车生产企业的市场部收集了某款汽车的销售数据,制成频数交叉表:如果年龄变量与选购的汽车颜色之间没有相关关系,那么这些频数应该是相似的,没有巨大差异,反之,如果这两个分类变量间有相关关系,那么某个或某些单元格里的频数将显著大于其它单元格。
根据上表的数据,可以制作出由期望频数组成的交叉表,期望频数的计算公式为行频数和*列频数和/总频数(参考第一列的计算过程)。卡方检验就是将上表的实际频数与下表的期望频数做逐个对比,算出卡方值和检验概率,从而判断两个变量是否有显著性差异。
对应分析承接上面两个表格的工作,它首先算出每个单元格的标准化残差,计算公式为:
从上面的公式来看,标准化残差包含了某个年龄段和某种汽车颜色的相关关系信息,相当于相关系数。说到这里,是否想到因子分析。是的,对应分析进行到这里,下一步也是提取标准化残差矩阵(交叉表)的公因子,然后将3个年龄群体和4个汽车颜色放入由公因子(新维度)组成的坐标空间内,通过它们之间的空间距离判断相关性强弱。
案例分析
欧洲人的眼睛和头发颜色可以用“绚烂多彩”来形容,特别是北欧和东欧人。欧洲人头发的颜色不仅有黑色,还有棕色、亚麻色、金黄色和红色;眼睛的颜色有棕色、蓝色、灰色、褐色和绿色。在基因理论和技术没有发展起来以前,欧洲人的眼睛颜色和头发颜色的关系一直是研究的热点,眼睛颜色和头发颜色到低是随机搭配的呢?还是眼睛的某种颜色更多和某种头发颜色搭配?对应分析方法在这个问题上的研究一直被奉为经典案例。基因技术发展起来以后,从基因的层面验证了上述对应分析的结果。
下面我们就以经典的,Fisher在1940采集的5387名苏格兰人的眼睛和头发颜色数据为例,介绍如何使用SPSS进行简单对应分析,并对结果进行解释。
分析思路
做简单对应分析(只有两个分类变量)之前,需要对交叉表进行卡方检验,只有卡方检验结果显示两个分类变量之间具有相关性,才有必要作对应分析,如果两个分类变量之间没有相关关系,也就失去作对应分析的必要了。
分析步骤
1、个案加权处理;大家记住,涉及到分类数据频数分析的情况,大多数情况下都需要进行个案加权处理。选择菜单【数据】-【个案加权】,依照下图进行操作,进行个案加权。
2、选择菜单【分析】-【降维】-【对应分析】,在跳出的对话框中进行如下操作。将头发颜色选为行变量;眼睛颜色选为列变量;点击定义范围,依据变量的分类数值填写最小值和最大值,然后点击更新。
3、其它设置保持软件默认状态就可以。点击确定,输出结果。
结果解释
1、交叉表格,也就是由两个分类变量组成的交叉列联表,交叉单元格内的数值代表频数。
2、对应分析摘要表;
最后一行显示的是上方交叉列联表的卡方检验结果,显著性小于0.05,说明眼睛颜色和头发颜色之间存在相关关系,这决定了对应分析是否有意义。
结果显示通过标准化残差矩阵总共提取了三个公因子,也就是三个维度,其中前面两个维度能够解释原来变量99.6%的信息,因此第三个维度不做考虑。
奇异值和惯量都是线性代数的概念,惯量等于奇异值的平方。惯量值就相当于因子分析中的特征值,代表对应维度在解释原始数据信息中的重要性。
3、行变量和列变量坐标;这两个表格显示行变量和列变量中每个类别在新产生两个维度中的坐标值。通过这两个表格的数据结果就能够做出对应分析散点图。数量代表每个类别的人数比例;
点对维的惯量表示分类变量中每个类别对维度的贡献,例如,第一个维度主要由眼睛颜色中的深色(0.605)和浅色(0.286)构成;
维对点的惯量正好相反,表示每个类别信息分别在两个维度的比例,例如深色眼睛的信息在第一个维度中占96.5%,第二个维度只有3.5%。
4、对应分析散点图;从散点图上看,金色头发、红色头发与浅色眼睛和蓝色眼睛的相关性强;棕色眼睛和棕色头发相关性强;深色头发、黑色头发与深色眼睛的相关性强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31