SPSS分析技术:简单对应分析
分类型数据(包括定类数据和定序数据)在数据分析中扮演着重要的角色,例如,分类型数据能够帮助我们对每个数据记录进行分门别类,但是由于分类型数据的特点,很多基于均值、方差和标准差的分析方法就不太适用了,通常使用的分析方法是基于频数的卡方检验和逻辑回归等。面对变量个数少、分类类别少的简单局面,卡方检验和二分类逻辑回归还能够从容应对,一旦变量数量和变量类别多时,分析结果的解读就让人头痛了。
例如,研究全国34个省级行政区居民的收入水平情况,通过抽样收集数据,使用卡方检验能够很容易得出不同省级行政区居民的收入水平分布有显著性差异,但是无法得到北京市高收入居民比例高、云南低收入居民比例低这样具体的结果,也就是无法对分类变量各类别间的相关关系进行清楚展现。对应分析是解决类别相关关系展示很好的方法,它能够将分类交叉表转换为相应的对应分析图,从而使分类结果图形化、直观化。
对应分析原理
数据统计分析方法有个很有趣的特点,就是名字很多,经常出现同一个分析方法在不同书籍中的名称不同,真有点百家争鸣的味道,这是因为由人组成的社会,人们总是希望自己能够青史留名,这不足为奇。对应分析在很多地方也被称为同质性分析或数量化方法。
对应分析的实质就是将交叉表里面的频数数据作变换以后,展现在散点图上,从而将抽象的交叉表信息形象化。这个变换过程涉及到线性代数的内容,因此在这里就不做数学公式的推导了,草堂君在这里做个形象的解释。
我们以两个分类变量的情况来介绍对应分析的原理。学习过卡方检验的朋友应该知道,卡方检验的实质是将实际的频数分析与期望频数作对比,如果差距很大,超过界限值,那么就可以认为组成交叉表的两个分类变量之间具有相关性。举个生活例子,某汽车生产企业的市场部收集了某款汽车的销售数据,制成频数交叉表:如果年龄变量与选购的汽车颜色之间没有相关关系,那么这些频数应该是相似的,没有巨大差异,反之,如果这两个分类变量间有相关关系,那么某个或某些单元格里的频数将显著大于其它单元格。
根据上表的数据,可以制作出由期望频数组成的交叉表,期望频数的计算公式为行频数和*列频数和/总频数(参考第一列的计算过程)。卡方检验就是将上表的实际频数与下表的期望频数做逐个对比,算出卡方值和检验概率,从而判断两个变量是否有显著性差异。
对应分析承接上面两个表格的工作,它首先算出每个单元格的标准化残差,计算公式为:
从上面的公式来看,标准化残差包含了某个年龄段和某种汽车颜色的相关关系信息,相当于相关系数。说到这里,是否想到因子分析。是的,对应分析进行到这里,下一步也是提取标准化残差矩阵(交叉表)的公因子,然后将3个年龄群体和4个汽车颜色放入由公因子(新维度)组成的坐标空间内,通过它们之间的空间距离判断相关性强弱。
案例分析
欧洲人的眼睛和头发颜色可以用“绚烂多彩”来形容,特别是北欧和东欧人。欧洲人头发的颜色不仅有黑色,还有棕色、亚麻色、金黄色和红色;眼睛的颜色有棕色、蓝色、灰色、褐色和绿色。在基因理论和技术没有发展起来以前,欧洲人的眼睛颜色和头发颜色的关系一直是研究的热点,眼睛颜色和头发颜色到低是随机搭配的呢?还是眼睛的某种颜色更多和某种头发颜色搭配?对应分析方法在这个问题上的研究一直被奉为经典案例。基因技术发展起来以后,从基因的层面验证了上述对应分析的结果。
下面我们就以经典的,Fisher在1940采集的5387名苏格兰人的眼睛和头发颜色数据为例,介绍如何使用SPSS进行简单对应分析,并对结果进行解释。
分析思路
做简单对应分析(只有两个分类变量)之前,需要对交叉表进行卡方检验,只有卡方检验结果显示两个分类变量之间具有相关性,才有必要作对应分析,如果两个分类变量之间没有相关关系,也就失去作对应分析的必要了。
分析步骤
1、个案加权处理;大家记住,涉及到分类数据频数分析的情况,大多数情况下都需要进行个案加权处理。选择菜单【数据】-【个案加权】,依照下图进行操作,进行个案加权。
2、选择菜单【分析】-【降维】-【对应分析】,在跳出的对话框中进行如下操作。将头发颜色选为行变量;眼睛颜色选为列变量;点击定义范围,依据变量的分类数值填写最小值和最大值,然后点击更新。
3、其它设置保持软件默认状态就可以。点击确定,输出结果。
结果解释
1、交叉表格,也就是由两个分类变量组成的交叉列联表,交叉单元格内的数值代表频数。
2、对应分析摘要表;
最后一行显示的是上方交叉列联表的卡方检验结果,显著性小于0.05,说明眼睛颜色和头发颜色之间存在相关关系,这决定了对应分析是否有意义。
结果显示通过标准化残差矩阵总共提取了三个公因子,也就是三个维度,其中前面两个维度能够解释原来变量99.6%的信息,因此第三个维度不做考虑。
奇异值和惯量都是线性代数的概念,惯量等于奇异值的平方。惯量值就相当于因子分析中的特征值,代表对应维度在解释原始数据信息中的重要性。
3、行变量和列变量坐标;这两个表格显示行变量和列变量中每个类别在新产生两个维度中的坐标值。通过这两个表格的数据结果就能够做出对应分析散点图。数量代表每个类别的人数比例;
点对维的惯量表示分类变量中每个类别对维度的贡献,例如,第一个维度主要由眼睛颜色中的深色(0.605)和浅色(0.286)构成;
维对点的惯量正好相反,表示每个类别信息分别在两个维度的比例,例如深色眼睛的信息在第一个维度中占96.5%,第二个维度只有3.5%。
4、对应分析散点图;从散点图上看,金色头发、红色头发与浅色眼睛和蓝色眼睛的相关性强;棕色眼睛和棕色头发相关性强;深色头发、黑色头发与深色眼睛的相关性强。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16