以大数据转变发展方式
大数据时代的到来,互联网成为基础设施,数据变成重要资源,这不仅意味着海量、多样、快速的数据处理和技术创新,更为重要的是改变了传统要素的组合方式。这种变化客观上要求必须转变传统的经济增长方式,实现创新驱动发展。因此,推动发展方式转变,要树立新发展理念,充分运用我国数据规模优势,实现数据质量、规模和应用水平同步提升,从以下几个方面更好地发挥大数据及其产业在推动发展方式转变上的作用。
一是以大数据产业发展作为动力。以大数据转变发展方式,应大力发展大数据及其产业,建立面向不同行业、不同环节的大数据资源整合和分析应用平台,开展基于大数据的第三方数据分析开发服务、业务流程外包服务和技术外包服务。围绕数据收集、储存、处理、应用等环节,加快计量、标准化、检验检测和认证认可等大数据产业基础建设,加速大数据应用普及。大力发展大型通用海量数据存储与管理、大数据处理与开发等软件产品,着力创新海量数据存储设备、大数据一体机等硬件产品,带动芯片、操作系统等技术产品发展,构筑健全的大数据产业体系。
二是以大数据优化传统产业结构。转变发展方式的根本途径是优化产业结构。传统产业在整个经济中仍占很大份额,大数据为传统产业的转型升级创造了有利条件。这体现在大数据有助于经济发展要素的网络化共享、协作化开发、集约化整合和高效化利用,对传统增长方式进行由里及表、从内到外的改变。大数据时代,企业精确生产、定制生产、开放生产成为主要特征,生产模式高效率和柔性化,利用大数据的实时、感知和预测等特点,企业能够及时了解用户体验数据,与消费者实时互动沟通,运用云计算对消费者的行为和消费海量数据进行分析,全面了解市场动态变化情况,在此基础上细分市场定位,进行相应的产品研发与设计,定向精准营销,提供更好的产品和更优的体验。如此一来,打通产品设计、研发、生产、供应、仓储、配送、财务、客户关系管理、营销等多个环节数据,增强经营开放性,打造工业互联网云平台,从用户需求端到产品供给端实现全流程全链条的智能化,降低制造业成本,提升经营效率,进而推动制造业研发创新体系、生产组织方式和经营管理模式持续变革。因此,以大数据推动产业经济与信息经济整合,加强大数据与传统产业融合,推动传统产业与大数据新业态、新模式协同发展,助力制造模式变革和工业转型升级,可以打造产业竞争新优势,加快结构转型升级步伐。
三是以大数据提升宏观调控水平。能否创新性地挖掘和应用隐藏在数据背后的经济规律,切准经济发展的脉搏甚至预测发展趋势,成为发展方式转变的关键。对市场的调节主体政府来讲,要认识到大数据的独特优势和发展趋势,树立新发展理念,突破传统思维方式,主动将大数据运用到加强和改善宏观调控以及更好发挥自身作用上来,从有限个案为基础向用数据说话转变,从静态治理向动态治理转变,准确把握数据背后的规律性,将发展方式的转变建立在自觉运用经济规律的基础上来。通过建立宏观调控数据体系,及时发布有关统计指标和数据,强化互联网数据资源利用和信息服务,加强与政务数据资源的关联分析和综合开发,为金融、税收、劳动就业、收入分配、电力及产业运行、质量安全、节能减排等领域动态监测以及产业安全预测预警提供信息支持,提高宏观调控的预见性、精准性、科学性和有效性;建立用数据说话、用数据决策、用数据管理、用数据创新的管理机制,促进决策科学化和管理精细化,通过迅速、及时、科学的决策来改善和加强宏观调控,充分发挥市场配置资源的决定性作用;以大数据思维转变政府管理理念,优化治理模式,提升政府治理能力,建设与市场经济体制相适应的法治政府、创新政府、廉洁政府和服务型政府,更好地服务经济发展和发展方式转变。
四是以大数据推动创新贴近市场。大数据推动着创新,而以主体平等、无边界开放、多元融合为特征的互联网思维成为时代的主流,物联网、云计算等技术成为创新关键,整个社会的创新体系因信息化而大大缩短了新知识的发现和传播过程,为科技创新贴近市场、实现精准突破提供了有力支撑。特别是大数据持续激发商业模式创新,不断催生新业态,已成为互联网等新兴领域促进业务创新增值、提升企业核心价值的重要动力。我国是全球网民最多的网络大国,互联网、移动互联网用户规模全球第一,拥有丰富的数据资源和市场优势,大数据部分关键技术研发取得突破,为发展方式转变奠定了坚实基础。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21