自己整理编写的R语言常用数据分析模型的模板,原文件为Rmd格式,直接复制粘贴过来,作为个人学习笔记保存和分享。
I. 单因素方差分析
#用data frame的格式输入数据
medicine <- data.frame(
Response=c(7,5,3,1,6,5,3,3,7,9,9,9,4,3,4,3),
Treatment=factor(c(rep(1,4),rep(2,4),rep(3,4),rep(4,4)))
)
#各组样本大小
table(medicine$Treatment)
#各组的均值
aggregate(medicine$Response,by=list(medicine$Treatment),FUN=mean)
#各组的标准差
aggregate(medicine$Response,by=list(medicine$Treatment),FUN=sd)
#调用aov函数进行方差分析(检验组间差异)
medicine.aov <- aov(Response ~ Treatment,data=medicine)
#summary提取方差分析的结果
summary(medicine.aov)
分析上述计算结果,Df表示自由度,Sum Sq 表示平方和,Mean Sq 表示均方,F value 是F值,Pr(>F)是p值,A即为因子A,Residuals 是残差。
但是我们注意到,这个结果并不完整。直接用summary()函数时候,只有因素A和误差两行,没有总和,这里编个小程序(anova.tab.R)作改进,计算方法为:将summary函数得到表中的第一行与第二行求和,得到总和行的值。
#anova.tab.R程序
anova.tab <- function(fm){
tab <- summary(fm)
k <- length(tab[[1]]-2)
temp <- c(sum(tab[[1]][,1]),sum(tab[[1]][,2]),rep(NA,k))
tab[[1]]["Total",] <- temp
}
将anova.tab.R函数保存在工作目录中。
getwd()
#利用anova.tab.R函数,得到完整的方差分析表
source("anova.tab.R");anova.tab(medicine.aov)
#画图
plot(medicine$Response~medicine$Treatment)
#绘制各组均值及其置信区间的图形
library(gplots)
plotmeans(medicine$Response~medicine$Treatment,xlab = "Treatment",ylab = "Response",main = "Mean Plot\nwith 95% CI")
1.多重比较
ANOVA对各疗法的F检验表明,4种药品用于缓解术后疼痛的疗效不同,但是并不能得出哪种药品疗法与其他不同。多重比较可以解决这个问题.e.g. TukeyHSD()函数提供了对各组均值差异的成对检验;multcomp包中的glht()函数提供了多重均值比较更为全面的方法,既适用于线性模型,也适用于广义线性模型;多重t检验方法针对每组数据进行t检验。代码如下:
TukeyHSD(medicine.aov)
#par()函数旋转轴标签,增大左边界面积,使标签摆放更美观。
par(las = 2)
par(mar = c(5, 8, 4, 2))
plot(TukeyHSD(medicine.aov))
图形中置信区间包含0的药品对比,说明差异不显著。
library(multcomp)
#为适合字母阵列摆放,par语句用来增大顶部边界面积
par(mar = c(5, 4, 6, 2))
tuk <- glht(medicine.aov, linfct = mcp(Treatment = "Tukey"))
#cld()函数中level选项为设置的显著性水平(这里的0.05对应95%置信区间)
plot(cld(tuk, level = 0.05), col = "lightgrey")
有相同字母的组(用箱线图表示)说明均值差异不显著。
多次重复使用t检验会增大犯第一类错误的概率,为了克服这一缺点,需要调整p-值。R软件调整p-值用的是p.adjust()函数,函数使用的不同参数代表不同的调整方法。
attach(medicine)
#求数据在各水平下的均值
mu<-c(mean(Response[Treatment==1]), mean(Response[Treatment==2]), mean(Response[Treatment==3]),mean(Response[Treatment==4])); mu
#作多重t检验。这里用到的pairwise.t.test()函数用来得到多重比较的p值
pairwise.t.test(Response, Treatment, p.adjust.method = "none")
#观察两个作调整后的p值的情况。p.adjust.method()函数的参数也可换为"hochberg","hommel","bonferroni","BH","BY","fdr"等。
pairwise.t.test(Response, Treatment, p.adjust.method = "holm")
#绘制箱线图
plot(medicine$Response~medicine$Treatment)
从上述结果可见,124无显著差异,3与124均有显著差异,即缓解疼痛的4种药品,3与124有显著差异,124间差异不显著
2.评估检验的假设条件
拟合结果的可信度来源于,做统计检验时数据满足假设条件的程度
(1)误差的正态性检验
单因素方差分析中,我们假设因变量服从正态分布,各组方差相等。可用Q-Q图来检验正态性假设。拟合诊断如下:
library(car)
qqPlot(lm(Response ~ Treatment, data = medicine), simulate = TRUE,
main = "QQ Plot", labels = FALSE)
数据几乎都落在95%的置信区间范围内,说明满足正态性假设
也可用W检验(shapiro.test()函数)方法对数据作正态性检验
attach(medicine)
shapiro.test(Response[Treatment==1])
shapiro.test(Response[Treatment==2])
shapiro.test(Response[Treatment==3])
shapiro.test(Response[Treatment==4])
计算结果表明,数据在四种水平下的均是正态的
(2)方差的其次性检验
方差的其次性检验就是检验数据在不同的水平下方差是否相同,常用方法是Bartlett检验
#R里用bartlett.test()函数来提供Bartlett检验。另外还有Fligner-Killeen检验(fligner.test()函数)和Brown-Forsythe检验(HH包中的hov()函数)
bartlett.test(Response~Treatment,data=medicine)
p值0.1285>0.05,接受原假设,认为各组的数据是等方差的
方差其次性分析对离群点非常敏感,可用car包的outlierTest()函数来检测离群点
library(car)
outlierTest(medicine.aov)
从p值结果看,并没有证据说明该数据中含有离群点
根据Q-Q图,Bartlett检验和离群点检验,该数据似乎可以用ANOVA模型拟合得很好,这些方法反过来增强了我们对于所得结果的信心
数据的总体分布类型未知;或数据的总体分布类型已知,但不符合正态分布;或某些变量可能无法精确测量时,可以使用非参数统计方法.非参数统计是抛开总体分布类型不考虑,对总体参数不做比较,比较的是总体分布的位置是否相同的统计方法.秩和检验是非参数统计中一种经常使用的检验方法.这里的“秩”又可被称为等级,即按照数据大小排定的次序号.此次序号的总和被称为“秩和”.
方差分析过程需要满足若干条件,F检验才能奏效,可惜有时候采集到的数据并不能满足这样的要求。像两样本比较时一样,尝试将数据转换为秩统计量,因为秩统计量的分布与总体分布无关,这样就可以避开总体分布的要求.上述问题就可以通过数据的秩统计量就解决了。在比较两个以上的总体时,广泛使用的是Kruskal-Wallis秩和检验,它是对两个以上样本进行比较的非参数检验方法。实质上,它是两样本的Wilcoxon方法在多于两个样本时的推广。
R软件提供了Kruskal-Wallis秩和检验,函数为kruskal.test()
(3)Kruskal-Wallis秩和检验
medicine <- data.frame(
Response=c(7,5,3,1,6,5,3,3,7,9,9,9,4,3,4,3),
Treatment=factor(c(rep(1,4),rep(2,4),rep(3,4),rep(4,4)))
)
kruskal.test(Response~Treatment,data=medicine)
p值=0.0344<0.05,拒绝原假设,认为四种药物缓解疼痛效果有显著差异
该函数还有另外两种写法如下:
kruskal.test(medicine$Response,medicine$Treatment)
A <- c(7,5,3,1)
B <- c(6,5,3,3)
C <- c(7,9,9,9)
D <- c(4,3,4,3)
kruskal.test(list(A,B,C,D))
之后再对上述数据作正太检验和方差齐次检验,如果全部通过检验,则该数据也可以作方差分析
(4)Friedman秩和检验
在配伍组设计中,多个样本的比较,如果它们的总体不能满足正态性和方差齐性的要求,可采用Friedman秩和检验
Friedman秩和检验的基本思想与前面介绍的方法类似,但是配伍组设计的随机化是在配伍组内进行的,而配伍组间没有进行随机化。因此在进行Friedman秩和检验时,是分别在每个配伍组里将数据从小到大编秩,如果相同的数据取平均秩次。
r软件中,函数friedman.test()提供了Friedman秩和检验
medicine.matrix <- matrix(
c(7,5,3,1,6,5,3,3,7,9,9,9,4,3,4,3),
ncol = 4,dimnames = list(1:4,c("A","B","C","D"))
)
friedman.test(medicine.matrix)
该函数还有另外两种写法如下:
x <- c(7,5,3,1,6,5,3,3,7,9,9,9,4,3,4,3)
#4行4列,每行4个数据,总共16个
g <- gl(4,4)
b <- gl(4,1,16)
friedman.test(x,g,b)
medicine <- data.frame(
x=c(7,5,3,1,6,5,3,3,7,9,9,9,4,3,4,3),
g = gl(4,4),b = gl(4,1,16)
)
friedman.test(x~g|b,data = medicine)
3.单因素协方差分析(显著因素下的水平间差异检验)
单因素协方差分析(ANCOVA)扩展了单因素方差分析(ANOVA),包含一个或多个定量的协变量。下面的例子来自于multcomp包中的litter数据集,怀孕小鼠被分为四个小组,每个小组接受不同剂量(0、5、50、500)的药物处理,产下幼崽的体重均值为因变量,怀孕时间为协变量。
(1)单因素ANCOVA
data(litter, package = "multcomp")
attach(litter)
#table()函数,看到每种剂量下所产幼崽数量并不同
table(dose)
#aggrgate()函数获得各组均值,可以发现未用药组幼崽体重均值最高
aggregate(weight, by = list(dose), FUN = mean)
fit <- aov(weight ~ gesttime + dose)
summary(fit)
由于使用了协变量,如果想要获取调整的组均值–即去除协变量效应后的组均值,可使用effects包中的effects()函数来计算调整的均值
library(effects)
effect("dose",fit)
(2)对用户定义的对照的多重比较
想得知具体哪种处理方式与其他不同,使用multcomp包来对所有均值进行成对比较(多重比较)
library(multcomp)
contrast <- rbind(`no drug vs. drug` = c(3, -1, -1, -1))
summary(glht(fit, linfct = mcp(dose = contrast)))
对照c(3, -1, -1, -1)设定第一组与其他三组飞均值进行比较。其他对照可用rbind()函数添加。从结果来看,假设检验的t统计量在p<0.05水平下显著,可以得出未用药组比其他用药条件下的出生体重高的结论
(3)评估检验的假设条件–检验同归斜率的同质性
ANCOVA与ANOVA相同,都需要正态性和方差齐次性假设,可用上述ANOVA的假设检验的相同步骤来检验。另外ANCOVA还假定回归斜率相同。ANCOVA模型包含怀孕时间*剂量的交互项时,可对回归斜率的同质性进行检验。交互效应若显著,则意味着时间和幼崽出生体重间的关系依赖于药物剂量的水平
library(multcomp)
fit2 <- aov(weight ~ gesttime * dose)
summary(fit2)
结果可以看到交互效应不显著,支持了斜率相等的假设。若假设不成立,可以尝试变换协变量或因变量,或使用能对每个斜率独立解释的模型,或使用不需要假设回归斜率同质性的非参数ANCOVA方法。(如sm包中的sm.ancova()函数)
(4)结果可视化
HH包中的ancova()函数可以绘制因变量、协变量和因子之间的关系图,代码如下:
library(HH)
ancova(weight ~ gesttime + dose, data = litter)
从图中可看出,用怀孕时间来预测出生体重的回归线相互平行,只是截距项不同。随着怀孕时间增加,幼崽出生体重也会增加。另外,还可以看到0剂量组截距项最大,5剂量组截距项最小。由于之前的设置,直线会保持平行,若用anvova(weight~gesttime*dose),生成的图形将允许斜率和截距项依据组别而发生变化,这对可视化那些违背回归斜率同质性的实例非常有用
II.双因素方差分析
1.不考虑交互作用
SAS自带数据集sashelp.class中包含了学生的姓名、性别与身高。导出数据存为csv格式,现在分析年龄与性别是否是影响体重的显著因素。该问题属于不均衡数据集的方差分析
class <- read.csv("class.csv",header=T)
#预处理表明该设计不是均衡设计(各设计单元中样本大小不一致)
table(class$Sex,class$Age)
#获得各单元的均值和标准差
aggregate(class$Weight,by=list(class$Sex,class$Age),FUN=mean)
aggregate(class$Weight,by=list(class$Sex,class$Age),FUN=sd)
#作双因素方差分析
class.aov <- aov(Weight ~ Sex+Age,data=class)
#调用自变函数anova.tab(),显示计算结果
source("anova.tab.R");anova.tab(class.aov)
根据p值不同说明年龄和性别对体重有显著影响
2.考虑交互作用
(1)3种方式对结果进行可视化处理
用interaction.plot()函数来展示双因素方差分析的交互效应
interaction.plot(class$Sex,class$Age,class$Weight, type = "b", col = c("red", "blue"), pch = c(16, 18), main = "Interaction between Dose and Supplement Type")
图形展示了各年龄下,学生体重的均值
或者用gplots包中的plotmeans()函数来展示交互效应
library(gplots)
plotmeans(class$Weight ~ interaction(class$Sex,class$Age, sep = ","),
connect = list(c(1, 3, 5), c(2, 4, 6)),
col = c("red", "darkgreen"),
main = "Interaction Plot with 95% CIs",
xlab = "Sex and Age Combination")
图形展示了均值、误差棒(95%CI)和样本大小
用HH包中的interaction2wt()函数来可视化结果,图形对任意顺序的因子设计的主效应和交互效应都会进行展示
library(HH)
interaction2wt(class$Weight ~ class$Sex*class$Age)
(2)有交互作用的方差分析
数据集fruit记录了在不同湿度和温度下某种植物的查处。这是一个双因素方差分析的情形。假设方差分析的假设条件满足,在显著性水平0.05的前提下,欲分析不同温度、不同湿度下产出是否有显著差异,以及温度和湿度的交互是否显著差异,如果交互有差异,分析在湿度一定的情况下,温度对产出的影响。
fruit <- read.csv("fruit.csv",header=T)
#output分别对于A、B、A&B的方差检验
fruit.aov <- aov(output_lbs ~ humidity+temperature+humidity:temperature, data=fruit)
source("anova.tab.R"); anova.tab(fruit.aov)
output对于A&B高度显著,说明交互效应显著
对于存在交互作用的两因素,我们应当固定一个因素的水平,对另一个因素的水平进行水平间差异检验?
library(effects)
effect("humidity",fruit.aov)
SUMMARY:方差分析是一种常见的统计模型,用于检验样本间均值是否相等。方差分析适用于处理因素类型为分类变量、响应变量类型为连续的情形。根据因素个数,方差分析可以分为单因素方差分析与多因素方差分析。在多因素方差分析中,要特别注意判断因素间是否存在交互作用。此外,在实际应用中,可以通过设计合理的试验,在尽可能排除外部因素的干扰后,再对试验数据进行方差分析,这样结果会更准确。
write.csv(medcine,"test_medcine.csv")
write.csv(class,"test_class.csv")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31