
一、 刀切法(jackknife)
刀切法的提出,是基于点估计准则无偏性。刀切法的作用就是不断地压缩偏差。但需要指出的是缩小偏差并不是一个好的办法,因为偏差趋于0时,均方误差会变得十分大。而且无偏性只有在大量重复时才会表现出与真值的偏差不大。Jackknife的想法在于:既然样本是抽出来的,那我在作估计、推断的时候“扔掉”几个样本点看看效果如何。
例如我们来看使用刀切法估计正态分布N(2,25)的方差,我们认为样本的修正方差是关于总体方差的一个估计量使用刀切法:
>x<-rnorm(100,2,5)
>jack<-function(x){
+jackknife<-0
+for(i in 1:length(x)) jackknife[i]=length(x)*var(x)-(length(x)-1)/length(x)*sum(var(x[-i]))
+ jackknife
+ }
>mean(jack(x))/length(x)
[1]26.07598
> var(x)
[1]26.33671
可以看出刀切法得到的估计量更接近总体方差。
关于刀切法,也不仅仅只是用来做参数估计的,他的用法与之前提到的bootstrap类似。
二、最小二乘估计
虽然MLe是很好的参数估计办法,它过分依赖总体分布。在不知道总体分布的情况下,又只知道一组数据,那么LSE将会是一个不错的选择。关于LSE的相关理论你可以参考任意一本数理统计的教材,比如前面提到的王兆军《数理统计讲义》(这个百度文库里有)
下面介绍一下R中的做回归的函数lm,用法如下:
lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)
仅以R中给出的example中的数据作为例子:
> ctl <-c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trt <-c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
> group <- gl(2,10,20,labels=c("Ctl","Trt"))
> weight <- c(ctl, trt)
> lm.D9 <- lm(weight ~ group)
> lm.D9
Call:
lm(formula = weight ~ group)
Coefficients:
(Intercept) groupTrt
5.032 -0.371
> summary(lm.D9)
Call:
lm(formula = weight ~ group)
Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4938 0.0685 0.2462 1.3690
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0320 0.2202 22.850 9.55e-15 ***
groupTrt -0.3710 0.3114 -1.191 0.249
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6964 on 18 degreesof freedom
Multiple R-squared: 0.07308, Adjusted R-squared: 0.02158
F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249
可以得到常数项为5.0320,一次项系数为-0.3710
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10