R语言与函数估计学习笔记(样条方法)
样条估计
如果函数在不同地方有不同的非线性度,或者有多个极值点,那么用多项式特别是低阶多项式来完成拟合是非常不合适的。一种解决办法是我们之前提到的近邻多项式(或者称局部多项式),另一种就是样条——用分段的低阶多项式逼近函数。
关于样条,常用的有两类,一类是多项式样条,另一类是光滑样条。
多项式样条
多项式样条的样条基有很多,最为著名的是我们之前在函数逼近中提到的truncated power basis与B-spline basis。我们这里十分简要的介绍一下B样条,B样条基下的函数逼近可以写为:
其中
上式中否则取0.在R中splines包的函数bs()提供了B样条估计,其调用格式为:
bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE, Boundary.knots = range(x))
对于参数df值得说明的是df=degree+(Knots个数),attr(,“knots”)会显示划分点,我们常用的3次B样条公式: df=k+3 (不含常数项)
我们以前面提到的essay data为例说明B样条的估计情况:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
m.bsp <- lm(y ~ bs(x, df = 6))
s = function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot = seq(min(x), max(x), length.out = 1000)
y.plot = s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, fitted(m.bsp), lty = 2, col = 2)
attr(bs(x, df = 6), "knots") #可以将看到,节点在不指定的情况下默认的是均匀样条,当然,我们可以根据散点图给#出节点的具体选择。
## 25% 50% 75%
## -1.875 -0.250 1.375
m.bsp1 <- lm(y ~ bs(x, df = 6, knots = c(-2.5, -1, 2)))
lines(x, fitted(m.bsp1), lty = 3, col = 3)
AIC(m.bsp)
## [1] 718.1
AIC(m.bsp1)
## [1] 727.4
summary(m.bsp)
##
## Call:
## lm(formula = y ~ bs(x, df = 6))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.790 -0.911 -0.065 0.892 4.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.816 0.622 2.92 0.0039 **
## bs(x, df = 6)1 -10.552 1.161 -9.09 < 2e-16 ***
## bs(x, df = 6)2 -7.127 0.755 -9.44 < 2e-16 ***
## bs(x, df = 6)3 0.813 0.926 0.88 0.3808
## bs(x, df = 6)4 -4.056 0.859 -4.72 4.5e-06 ***
## bs(x, df = 6)5 5.781 0.967 5.98 1.1e-08 ***
## bs(x, df = 6)6 -3.505 0.865 -4.05 7.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.42 on 193 degrees of freedom
## Multiple R-squared: 0.824, Adjusted R-squared: 0.819
## F-statistic: 151 on 6 and 193 DF, p-value: <2e-16
可以看到B样条基本很接近真实函数了,summary(m.bsp)报告了各个系数的估计,带入f(x)的B样条基展开中即可得到一个显式的表达式。
光滑样条
虽然B样条已经很好了,但是理论与实践都表明直接用最小二乘去求解系数效果不好,容易过拟合。一个可能的改进是光滑样条。所谓的光滑样条,就是在求解最小二乘时给估计函数f(x)加上了一定的惩罚,这个有点类似压缩估计。我们这里采用最常用的光滑性惩罚,得到函数f(x)的估计m(x)满足如下的惩罚最小二乘:
在R的splines包中提供了函数smooth.spline来求解光滑样条
easy <- read.table("D:/R/data/easysmooth.dat", header = T) x <- easy$X y <- easy$Y s.hat <- smooth.spline(x, y) ## OUTPUT s.hat
## Call: ## smooth.spline(x = x, y = y) ## ## Smoothing Parameter spar= 0.7251 lambda= 0.0002543 (12 iterations) ## Equivalent Degrees of Freedom (Df): 11.56 ## Penalized Criterion: 380.9 ## GCV: 2.145
## OUTPUT PLOTS s <- function(x) { (x^3) * sin((x + 3.4)/2) } x.plot = seq(min(x), max(x), length.out = 1000) y.plot = s(x.plot) plot(x, y, xlab = "Predictor", ylab = "Response") lines(x.plot, y.plot, lty = 1, col = 1) lines(s.hat, lty = 2, col = 2)
最后我们来讲一下怎么计算出m(x),这里我们使用Reinsch algorithm。Step 1: 计算向量Q′y.Step 2: 找到一个非0对角阵R+λQ′Q使得它可以进行Cholesky分解,有因子L,DStep 3: 解方程:(R+λQ′Q)γ=Q′yStep 4: 得到估值m=y−αQγ.上面的Q与R可以表示为:
上面的t表示节点。我们不妨来算算essay data的例子:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
n <- length(y)
knots <- seq(min(x), max(x), length = n + 1)
h <- knots[-1] - knots[-n]
Q <- matrix(0, n, n - 2)
R <- matrix(0, n - 2, n - 2)
for (i in 1:(n - 2)) {
Q[i, i] = 1/h[i]
Q[i + 1, i] = -1/h[i] - 1/h[i + 1]
Q[i + 2, i] = 1/h[i + 1]
}
for (i in 2:(n - 2)) {
R[i, i] = 1/6 * (h[i] + h[i + 1])
R[i - 1, i] = h[i]/6
R[i, i - 1] = h[i]/6
}
R[1, 1] = 1/6 * (h[1] + h[2])
lambda <- 0.2
A <- R + lambda * t(Q) %*% Q
gamma <- solve(A, t(Q) %*% as.matrix(y))
g <- as.matrix(y) - lambda * Q %*% gamma
s <- function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot <- seq(min(x), max(x), length.out = 1000)
y.plot <- s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, g, lty = 2, col = 2)
在惩罚系数为0.2的情况下,拟合还是不坏的,不是吗?至于为什么可以这样算,我们只要注意到\int [m^{''}(x)]dx=m^'(x_i)QR^{-1}Q^'m(x_i),估计的问题就与我们十分熟悉的lasso,岭回归十分相像了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30