
R语言与函数估计学习笔记(样条方法)
样条估计
如果函数在不同地方有不同的非线性度,或者有多个极值点,那么用多项式特别是低阶多项式来完成拟合是非常不合适的。一种解决办法是我们之前提到的近邻多项式(或者称局部多项式),另一种就是样条——用分段的低阶多项式逼近函数。
关于样条,常用的有两类,一类是多项式样条,另一类是光滑样条。
多项式样条
多项式样条的样条基有很多,最为著名的是我们之前在函数逼近中提到的truncated power basis与B-spline basis。我们这里十分简要的介绍一下B样条,B样条基下的函数逼近可以写为:
其中
上式中否则取0.在R中splines包的函数bs()提供了B样条估计,其调用格式为:
bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE, Boundary.knots = range(x))
对于参数df值得说明的是df=degree+(Knots个数),attr(,“knots”)会显示划分点,我们常用的3次B样条公式: df=k+3 (不含常数项)
我们以前面提到的essay data为例说明B样条的估计情况:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
m.bsp <- lm(y ~ bs(x, df = 6))
s = function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot = seq(min(x), max(x), length.out = 1000)
y.plot = s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, fitted(m.bsp), lty = 2, col = 2)
attr(bs(x, df = 6), "knots") #可以将看到,节点在不指定的情况下默认的是均匀样条,当然,我们可以根据散点图给#出节点的具体选择。
## 25% 50% 75%
## -1.875 -0.250 1.375
m.bsp1 <- lm(y ~ bs(x, df = 6, knots = c(-2.5, -1, 2)))
lines(x, fitted(m.bsp1), lty = 3, col = 3)
AIC(m.bsp)
## [1] 718.1
AIC(m.bsp1)
## [1] 727.4
summary(m.bsp)
##
## Call:
## lm(formula = y ~ bs(x, df = 6))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.790 -0.911 -0.065 0.892 4.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.816 0.622 2.92 0.0039 **
## bs(x, df = 6)1 -10.552 1.161 -9.09 < 2e-16 ***
## bs(x, df = 6)2 -7.127 0.755 -9.44 < 2e-16 ***
## bs(x, df = 6)3 0.813 0.926 0.88 0.3808
## bs(x, df = 6)4 -4.056 0.859 -4.72 4.5e-06 ***
## bs(x, df = 6)5 5.781 0.967 5.98 1.1e-08 ***
## bs(x, df = 6)6 -3.505 0.865 -4.05 7.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.42 on 193 degrees of freedom
## Multiple R-squared: 0.824, Adjusted R-squared: 0.819
## F-statistic: 151 on 6 and 193 DF, p-value: <2e-16
可以看到B样条基本很接近真实函数了,summary(m.bsp)报告了各个系数的估计,带入f(x)的B样条基展开中即可得到一个显式的表达式。
光滑样条
虽然B样条已经很好了,但是理论与实践都表明直接用最小二乘去求解系数效果不好,容易过拟合。一个可能的改进是光滑样条。所谓的光滑样条,就是在求解最小二乘时给估计函数f(x)加上了一定的惩罚,这个有点类似压缩估计。我们这里采用最常用的光滑性惩罚,得到函数f(x)的估计m(x)满足如下的惩罚最小二乘:
在R的splines包中提供了函数smooth.spline来求解光滑样条
easy <- read.table("D:/R/data/easysmooth.dat", header = T) x <- easy$X y <- easy$Y s.hat <- smooth.spline(x, y) ## OUTPUT s.hat
## Call: ## smooth.spline(x = x, y = y) ## ## Smoothing Parameter spar= 0.7251 lambda= 0.0002543 (12 iterations) ## Equivalent Degrees of Freedom (Df): 11.56 ## Penalized Criterion: 380.9 ## GCV: 2.145
## OUTPUT PLOTS s <- function(x) { (x^3) * sin((x + 3.4)/2) } x.plot = seq(min(x), max(x), length.out = 1000) y.plot = s(x.plot) plot(x, y, xlab = "Predictor", ylab = "Response") lines(x.plot, y.plot, lty = 1, col = 1) lines(s.hat, lty = 2, col = 2)
最后我们来讲一下怎么计算出m(x),这里我们使用Reinsch algorithm。Step 1: 计算向量Q′y.Step 2: 找到一个非0对角阵R+λQ′Q使得它可以进行Cholesky分解,有因子L,DStep 3: 解方程:(R+λQ′Q)γ=Q′yStep 4: 得到估值m=y−αQγ.上面的Q与R可以表示为:
上面的t表示节点。我们不妨来算算essay data的例子:
easy <- read.table("D:/R/data/easysmooth.dat", header = T)
x <- easy$X
y <- easy$Y
n <- length(y)
knots <- seq(min(x), max(x), length = n + 1)
h <- knots[-1] - knots[-n]
Q <- matrix(0, n, n - 2)
R <- matrix(0, n - 2, n - 2)
for (i in 1:(n - 2)) {
Q[i, i] = 1/h[i]
Q[i + 1, i] = -1/h[i] - 1/h[i + 1]
Q[i + 2, i] = 1/h[i + 1]
}
for (i in 2:(n - 2)) {
R[i, i] = 1/6 * (h[i] + h[i + 1])
R[i - 1, i] = h[i]/6
R[i, i - 1] = h[i]/6
}
R[1, 1] = 1/6 * (h[1] + h[2])
lambda <- 0.2
A <- R + lambda * t(Q) %*% Q
gamma <- solve(A, t(Q) %*% as.matrix(y))
g <- as.matrix(y) - lambda * Q %*% gamma
s <- function(x) {
(x^3) * sin((x + 3.4)/2)
}
x.plot <- seq(min(x), max(x), length.out = 1000)
y.plot <- s(x.plot)
plot(x, y, xlab = "Predictor", ylab = "Response")
lines(x.plot, y.plot, lty = 1, col = 1)
lines(x, g, lty = 2, col = 2)
在惩罚系数为0.2的情况下,拟合还是不坏的,不是吗?至于为什么可以这样算,我们只要注意到\int [m^{''}(x)]dx=m^'(x_i)QR^{-1}Q^'m(x_i),估计的问题就与我们十分熟悉的lasso,岭回归十分相像了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26