R语言的常用函数速查
基本
一、数据管理
vector:向量 numeric:数值型向量
logical:逻辑型向量character;字符型向量 list:列表 data.frame:数据框c:连接为向量或列表 length:求长度
subset:求子集seq,from:to,sequence:等差序列rep:重复 NA:缺失值
NULL:空对象sort,order,unique,rev:排序unlist:展平列表attr,attributes:对象属性mode,typeof:对象存储模式与类型names:对象的名字属性
二、字符串处理
character:字符型向量 nchar:字符数 substr:取子串format,formatC:把对象用格式转换为字符串paste,strsplit:连接或拆分charmatch,pmatch:字符串匹配grep,sub,gsub:模式匹配与替换
三、复数
complex,Re,Im,Mod,Arg,Conj:复数函数
四、因子
factor:因子 codes:因子的编码 levels:因子的各水平的名字nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子table:交叉频数表 split:按因子分组aggregate:计算各数据子集的概括统计量tapply:对“不规则”数组应用函数
数学
一、计算
+, -, *, /, ^, %%,
%/%:四则运算ceiling,floor,round,signif,trunc,zapsmall:舍入max,min,pmax,pmin:最大最小值
range:最大值和最小值sum,prod:向量元素和,积cumsum,cumprod,cummax,cummin:累加、累乘sort:排序approx和approx
fun:插值diff:差分sign:符号函数
二、数学函数
abs,sqrt:绝对值,平方根log, exp, log10, log2:对数与指数函数sin,cos,tan,asin,acos,atan,atan2:三角函数sinh,cosh,tanh,asinh,acosh,atanh:双曲函数
beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数
fft,mvfft,convolve:富利叶变换及卷积polyroot:多项式求根poly:正交多项式spline,splinefun:样条差值besselI,besselK,besselJ,besselY,gammaCody:Bessel函数deriv:简单表达式的符号微分或算法微分
三、数组
array:建立数组 matrix:生成矩阵data.matrix:把数据框转换为数值型矩阵lower.tri:矩阵的下三角部分 mat.or.vec:生成矩阵或向量t:矩阵转置 cbind:把列合并为矩阵 rbind:把行合并为矩阵diag:矩阵对角元素向量或生成对角矩阵aperm:数组转置 nrow, ncol:计算数组的行数和列数dim:对象的维向量 dimnames:对象的维名row/colnames:行名或列名 %*%:矩阵乘法crossprod:矩阵交叉乘积(内积) outer:数组外积kronecker:数组的Kronecker积 apply:对数组的某些维应用函数tapply:对“不规则”数组应用函数 sweep:计算数组的概括统计量aggregate:计算数据子集的概括统计量 scale:矩阵标准化matplot:对矩阵各列绘图 cor:相关阵或协差阵Contrast:对照矩阵 row:矩阵的行下标集col:求列下标集
四、线性代数
solve:解线性方程组或求逆 eigen:矩阵的特征值分解svd:矩阵的奇异值分解 backsolve:解上三角或下三角方程组chol:Choleski分解 qr:矩阵的QR分解chol2inv:由Choleski分解求逆
五、逻辑运算
,=,==,!=:比较运算符!,&,&&,|,||,xor():逻辑运算符logical:生成逻辑向量 all,any:逻辑向量都为真或存在真ifelse():二者择一 match,%in%:查找unique:找出互不相同的元素 which:找到真值下标集合duplicated:找到重复元素
六、优化及求根
optimize,uniroot,polyroot:一维优化与求根
程序设计
一、控制结构
if,else,ifelse,switch:分支for,while,repeat,break,next:循环apply,lapply,sapply,tapply,sweep:替代循环的函数。
二、函数
function:函数定义 source:调用文件 call:函数调用.C,.Fortran:调用C或者Fortran子程序的动态链接库。Recall:递归调用browser,debug,trace,traceback:程序调试options:指定系统参数 missing:判断虚参是否有对应实参nargs:参数个数 stop:终止函数执行on.exit:指定退出时执行 eval,expression:表达式计算system.time:表达式计算计时 invisible:使变量不显示menu:选择菜单(字符列表菜单)
其它与函数有关的还有:delay,delete.response,deparse,do.call,dput,environment ,,formals,format.info,interactive,is.finite,is.function,is.language,is.recursive ,match.arg,match.call,match.fun,model.extract,name,parse,substitute,sys.parent ,warning,machine。
三、输入输出
cat,print:显示对象sink:输出转向到指定文件dump,save,dput,write:输出对象scan,read.table,load,dget:读入
四、工作环境
ls,objects:显示对象列表 rm, remove:删除对象q,quit:退出系统 .First,.Last:初始运行函数与退出运行函数。options:系统选项 ?,help,help.start,apropos:帮助功能data:列出数据集
一、统计分布
每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数 函数,r――随机数函数。比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下 面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:
norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心)unif:均匀,exp:指数,weibull:威布尔,gamma:伽玛,beta:贝塔lnorm:对数正态,logis:逻辑分布,cauchy:柯西,binom:二项分布,geom:几何分布,hyper:超几何,nbinom:负二项,pois:泊松signrank:符号秩,wilcox:秩和,tukey:学生化极差
二、简单统计量
sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计 量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21