从计算广告看大数据和人工智能的关系
一、计算广告是大数据问题中的一支;二、大数据技术在计算广告中的应用:受众定向的冷启动和数据驱动的投放决策;三、从计算广告到理解“人工智能”。
本文系亿欧智库原创,以下基于笔者从书籍《计算广告》及相关市场信息研究得出,错误和偏颇之处在所难免。请大家多多指正批评。
不了解计算广告,就不可能深入地了解互联网,因为广告为全世界互联网行业贡献了大部分收入;其次,不了解计算广告,也不太容易真正理解大数据,因为计算广告是大数据最早落地的应用,也是到目前为止唯一获得规模化营收的应用。
一、计算广告,大数据问题中的一支;
如上图所示,C类曲线只需通过少量采样就能达到问题的目标函数,此为传统数据处理问题,一般统计报表、报告归属此类;A类曲线代表的数据问题不同于C类的少量采样就能达到全量数据的效果,解决问题的收益与数据采样率的高低呈强正相关关系,A类曲线绘制的便是大数据问题;B类处于A类和C类中间,少量采样有明显的收益效果,一旦超过一定范围则收益效果不那么明显。
由此可以总结出,如果有的数据处理问题无法通过数据采样的方法来降低处理的复杂程度,就必须利用一些专门为海量数据处理而设计的计算架构和存储技术来实现,此类数据处理问题称之为大数据问题。
计算广告需要用到每一个人的行为进行定制化推送,而无法单靠对小部分个体的采样来完成,因此归类为大数据问题。计算广告是大数据问题中的一支。
二、大数据技术在计算广告中的应用;
计算广告的核心问题,是为一系列用户与环境的组合找到最合适的广告投放策略以优化整体广告活动的利润。在线广告区别于传统线下广告的最大特点体现在计算优化和可衡量的效果。大数据技术在计算广告中的应用主要体现在计算优化上,具体为受众定向的冷启动、以及数据驱动的投放决策。
受众定向的冷启动;
广告最初的定向标签往往都设置在较粗的粒度上,最典型的是一些人口属性标签。按照广告本身就是一项服务业的本质来看,受众定向显然更符合需求方的口味和利益,也是受众定性推动着市场向着精细化运作的方向快速发展。
如上所示为计算广告受众定向的几种方法,其中人口属性这些定向的数据除非有特别的来源,如实名制SNS的注册信息或在线购物的消费记录等,一般情况下要进行准确的定向并不容易,所以利用好已知人口属性的用户作训练集,构造分类器对人口属性进行自动标注。
数据驱动的投放决策;
与工业革命时期机器化的根本驱动力——电力相类比,互联网化的根本驱动力可以认为是数据的深入加工和利用。在线广告的计算技术在很大程度上也要依赖于对于数据的大规模利用。广泛收集用户的行为数据和广告反馈数据,利用云计算的基础设施对用户打上合适的标签,同样根据数据在多个广告竞争同一次展示时做出决策,再将投放的结果统计数据反馈给广告操作人员以调整投放策略,此为计算广告的基本投放逻辑,可以认为,在线广告系统就是一个大数据处理平台,对数据处理的规模和响应速度的要求都相当高。
三、从计算广告到理解“人工智能”;
就目前情况来看,深度学习技术在计算广告上取得的提高,没有语音图像这些领域那样显著。这里面规律性的解释是,语音图像识别是对自然现象的数据收集和处理,我们完全可以通过主动的语料收集,让各色传感器都做到充分的覆盖,这是一个基本确定、变化不快的数据空间;而计算广告面对的社会现象数据是一个由千万网民反馈、快速变化的数据空间,即使对同一个人、同一则广告、同一个广告位,点击与否是一个很不确定的时间,而这样的不确定性即使引入再多的上下文信息也无法消除。
从狭义层面来理解人工智能便是“大数据+自动化”的产物,“自动化”依赖从标注数据中寻得y=f的规律模型来完成下一个的识别,狭义人工智能是建立在海量的数据基础之上的,也就是现下火热的深度学习和大数据有着非常紧密的联系。
而普罗大众所期待的广义人工智能,是要做到像人类一样面对任何不确定环境都能凭借种类各异的思考方式来试图给出解决方案。
松鼠没有像人类一样拥有种类各异的思考方式,但即使在几年之后,它依然可以精确记住几千个橡子所在的具体位置,这种技能就能甩人类好几条街了。人工智能也很类似,我们完全可以把计算器当成算数天才,计算广告利用狭义人工智能的存储力和计算力,在对人类各色标签记忆的完整度也已经超过了人类,在竞价环节的实时数据反馈也交上了令人满意的答卷,但面对不确定环境的决策能力,其实人类也没有教给它,所以广义的人工智能即通用人工智能,机器远不及人类。
也许换个层面来理解智能,这不是一个单一维度的概念,有的智能或许非常复杂,包含许多象征各种思维模式的子节点,还有的或许较为简单,但却发挥到了极端,处在可能性空间的角落位置。我们可以将智能视作一套生态系统,不同思维模式的节点相互依赖、共创共生。
人工智能在中国已经掀起了新一轮技术创新的浪潮,我们如何去感受人工智能的风向标?技术、创新、应用如何突破?未来人工智能这片蓝海怎么去航行?
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20