从计算广告看大数据和人工智能的关系
一、计算广告是大数据问题中的一支;二、大数据技术在计算广告中的应用:受众定向的冷启动和数据驱动的投放决策;三、从计算广告到理解“人工智能”。
本文系亿欧智库原创,以下基于笔者从书籍《计算广告》及相关市场信息研究得出,错误和偏颇之处在所难免。请大家多多指正批评。
不了解计算广告,就不可能深入地了解互联网,因为广告为全世界互联网行业贡献了大部分收入;其次,不了解计算广告,也不太容易真正理解大数据,因为计算广告是大数据最早落地的应用,也是到目前为止唯一获得规模化营收的应用。
一、计算广告,大数据问题中的一支;
如上图所示,C类曲线只需通过少量采样就能达到问题的目标函数,此为传统数据处理问题,一般统计报表、报告归属此类;A类曲线代表的数据问题不同于C类的少量采样就能达到全量数据的效果,解决问题的收益与数据采样率的高低呈强正相关关系,A类曲线绘制的便是大数据问题;B类处于A类和C类中间,少量采样有明显的收益效果,一旦超过一定范围则收益效果不那么明显。
由此可以总结出,如果有的数据处理问题无法通过数据采样的方法来降低处理的复杂程度,就必须利用一些专门为海量数据处理而设计的计算架构和存储技术来实现,此类数据处理问题称之为大数据问题。
计算广告需要用到每一个人的行为进行定制化推送,而无法单靠对小部分个体的采样来完成,因此归类为大数据问题。计算广告是大数据问题中的一支。
二、大数据技术在计算广告中的应用;
计算广告的核心问题,是为一系列用户与环境的组合找到最合适的广告投放策略以优化整体广告活动的利润。在线广告区别于传统线下广告的最大特点体现在计算优化和可衡量的效果。大数据技术在计算广告中的应用主要体现在计算优化上,具体为受众定向的冷启动、以及数据驱动的投放决策。
受众定向的冷启动;
广告最初的定向标签往往都设置在较粗的粒度上,最典型的是一些人口属性标签。按照广告本身就是一项服务业的本质来看,受众定向显然更符合需求方的口味和利益,也是受众定性推动着市场向着精细化运作的方向快速发展。
如上所示为计算广告受众定向的几种方法,其中人口属性这些定向的数据除非有特别的来源,如实名制SNS的注册信息或在线购物的消费记录等,一般情况下要进行准确的定向并不容易,所以利用好已知人口属性的用户作训练集,构造分类器对人口属性进行自动标注。
数据驱动的投放决策;
与工业革命时期机器化的根本驱动力——电力相类比,互联网化的根本驱动力可以认为是数据的深入加工和利用。在线广告的计算技术在很大程度上也要依赖于对于数据的大规模利用。广泛收集用户的行为数据和广告反馈数据,利用云计算的基础设施对用户打上合适的标签,同样根据数据在多个广告竞争同一次展示时做出决策,再将投放的结果统计数据反馈给广告操作人员以调整投放策略,此为计算广告的基本投放逻辑,可以认为,在线广告系统就是一个大数据处理平台,对数据处理的规模和响应速度的要求都相当高。
三、从计算广告到理解“人工智能”;
就目前情况来看,深度学习技术在计算广告上取得的提高,没有语音图像这些领域那样显著。这里面规律性的解释是,语音图像识别是对自然现象的数据收集和处理,我们完全可以通过主动的语料收集,让各色传感器都做到充分的覆盖,这是一个基本确定、变化不快的数据空间;而计算广告面对的社会现象数据是一个由千万网民反馈、快速变化的数据空间,即使对同一个人、同一则广告、同一个广告位,点击与否是一个很不确定的时间,而这样的不确定性即使引入再多的上下文信息也无法消除。
从狭义层面来理解人工智能便是“大数据+自动化”的产物,“自动化”依赖从标注数据中寻得y=f的规律模型来完成下一个的识别,狭义人工智能是建立在海量的数据基础之上的,也就是现下火热的深度学习和大数据有着非常紧密的联系。
而普罗大众所期待的广义人工智能,是要做到像人类一样面对任何不确定环境都能凭借种类各异的思考方式来试图给出解决方案。
松鼠没有像人类一样拥有种类各异的思考方式,但即使在几年之后,它依然可以精确记住几千个橡子所在的具体位置,这种技能就能甩人类好几条街了。人工智能也很类似,我们完全可以把计算器当成算数天才,计算广告利用狭义人工智能的存储力和计算力,在对人类各色标签记忆的完整度也已经超过了人类,在竞价环节的实时数据反馈也交上了令人满意的答卷,但面对不确定环境的决策能力,其实人类也没有教给它,所以广义的人工智能即通用人工智能,机器远不及人类。
也许换个层面来理解智能,这不是一个单一维度的概念,有的智能或许非常复杂,包含许多象征各种思维模式的子节点,还有的或许较为简单,但却发挥到了极端,处在可能性空间的角落位置。我们可以将智能视作一套生态系统,不同思维模式的节点相互依赖、共创共生。
人工智能在中国已经掀起了新一轮技术创新的浪潮,我们如何去感受人工智能的风向标?技术、创新、应用如何突破?未来人工智能这片蓝海怎么去航行?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31