R语言与点估计学习笔记(矩估计与MLE)
众所周知,R语言是个不错的统计软件。今天分享一下利用R语言做点估计的内容。主要有:矩估计、极大似然估计、EM算法、最小二乘估计、刀切法(Jackknife)、自助法(Bootstrap)的相关内容。
点估计是参数估计的一个组成部分。有许多的估计方法与估计理论,具体内容可以参见lehmann的《点估计理论》(推荐第一版,第二版直接从UMVU估计开始的)
一、矩估计
对于随机变量来说,矩是其最广泛,最常用的数字特征,母体的各阶矩一般与的分布中所含的未知参数有关,有的甚至就等于未知参数。由辛钦大数定律知,简单随机子样的子样原点矩依概率收敛到相应的母体原点矩。这就启发我们想到用子样矩替换母体矩,进而找出未知参数的估计,基于这种思想求估计量的方法称为矩法。用矩法求得的估计称为矩法估计,简称矩估计。它是由英国统计学家皮尔逊Pearson于1894年提出的。
因为不同的分布有着不同的参数,所以在R的基本包中并没有给出现成的函数,我们通常使用人机交互的办法处理矩估计的问题,当然也可以自己编写一些函数。
首先,来看看R中给出的一些基本分布,如下表:
虽然R中基本包中没有现成求各阶矩的函数,但是对于给出的样本,R可以求出其平均值(函数:mean),方差(var),标准差(sd),在fBasics包中还提供了计算偏度的函数skewness(),以及计算峰度的kurtosis()。这样我们也可以间接地得到分布一到四阶矩的数据。由于低阶矩包含信息较为丰富,矩估计也一般采用低阶矩去处理。
注:在actuar包中,函数emm()可以计算样本的任意阶原点矩。但在参数估计时需要注意到原点矩的存在性
例如我们来看看正态分布N(0,1)的矩估计效果。
> x<-rnorm(100) #产生N(0,1)的100个随机数
> mu<-mean(x) #对N(mu,sigma)中的mu做矩估计
> sigma<-var(x) #这里的var并不是样本方差的计算函数,而是修正的样本方差,其实也就是x的总体方差
> mu
[1] -0.1595923
> sigma
[1] 1.092255
可以看出,矩估计的效果还是可以的。
我们再来看一个矩估计的例子:设总体X服从二项分布B(k,p),X1,X2,…,Xn,是总体的一个样本。K,p为未知参数。那么k,p的矩估计满足方程:kp – M1= 0, kp(1 − p) −M2 = 0.
我们可以编写函数:
moment <-function(p){
f<-c(p[1]*p[2]-M1,p[1]*p[2]-p[1]*p[2]^2-M2)
J<-matrix(c(p[2],p[1],p[2]-p[2]^2,p[1]-2*p[1]*p[2]),nrow=2,byrow=T)#jicobi矩阵
list(f=f,J=J)
}# p[2]=p, p[1]=k,
检验程序
x<-rbinom(100, 20, 0.7); n<-length(x)
M1<-mean(x);M2<-(n-1)/n*var(x)
p<-c(10,0.5)
Newtons(moment, p)$root #是用牛顿法解方程的程序,见附件1
运行结果为:
[1]22.973841 0.605036
可以得到k,p的数值解
二、极大似然估计(MLE)
极大似然估计的基本思想是:基于样本的信息参数的合理估计量是产生获得样本的最大概率的参数值。值得一提的是:极大似然估计具有不变性,这也为我们求一些奇怪的参数提供了便利。
在单参数场合,我们可以使用函数optimize()来求极大似然估计值,函数的介绍如下:
optimize(f = , interval = , ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)
例如我们来处理Poisson分布参数lambda的MLE。
设X1,X2,…,X100为来自P(lambda)的独立同分布样本,那么似然函数为:
L(lambda,x)=lambda^(x1+x2+…+x100)*exp(10*lambda)/(gamma(x1+1)…gamma(x100+1))
这里涉及到的就是一个似然函数的选择问题:是直接使用似然函数还是使用对数似然函数,为了说明这个问题,我们可以看这样一段R程序:
> x<-rpois(100,2)
> sum(x)
[1] 215
> ga(x)#这是一个求解gamma(x1+1)…gamma(x100+1)的函数,用gamma函数求阶乘是为了提高计算效率(源代码见附1)
[1] 1.580298e+51
> f<-function(lambda)lambda^(215)*exp(10*lambda)/(1.580298*10^51)#这里有一些magic number + hard code 的嫌疑,其实用ga(x)带入,在函数参数中多加一个x就好
> optimize(f,c(1,3),maximum=T)
$maximum
[1] 2.999959
$objective
[1] 2.568691e+64
> fun<-function(lambda)-100*lambda+215*log(lambda)-log(1.580298*10^51)
> optimize(fun,c(1,3),maximum=T)
$maximum
[1] 2.149984 #MLE
$objective
[1] -168.3139
为什么会有这样的差别?这个源于函数optimize,这个函数本质上就是求一个函数的最大值以及取最大值时的自变量。但是这里对函数的稳定性是有要求的,取对数无疑增加了函数的稳定性,求极值才会合理。这也就是当你扩大了MLE存在区间时warning会出现的原因。当然,限定范围时,MLE会在边界取到,但是,出现边界时,我们需要更多的信息去判断它。这个例子也说明多数情况下利用对数似然估计要优于似然函数。
在多元ML估计时,你能用的函数将变为optim,nlm,nlminb它们的调用格式分别为:
optim(par, fn, gr = NULL, ..., method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"), lower = -Inf, upper = Inf, control = list(), hessian = FALSE)nlm(f, p, ..., hessian = FALSE, typsize = rep(1, length(p)), fscale = 1, print.level = 0, ndigit = 12, gradtol = 1e-6, stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000), steptol = 1e-6, iterlim = 100, check.analyticals = TRUE)nlminb(start, objective, gradient = NULL, hessian = NULL, ..., scale = 1, control = list(), lower = -Inf, upper = Inf)
> x<-rnorm(1000,2,6) #6是标准差,而我们估计的是方差
> ll<-function(theta,data){
+ n<-length(data)
+ ll<--0.5*n*log(2*pi)-0.5*n*log(theta[2])-1/2/theta[2]*sum((data-theta[1])^2)
+ return(-ll)
+ }
>nlminb(c(0.5,2),ll,data=x,lower=c(-100,0),upper=c(100,100)) $par
[1] 1.984345 38.926692
看看结果估计的还是不错的,可以利用函数mean,var验证对正态分布而言,矩估计与MLE是一致.
然而这里还有一些没有解决的问题,比如使用nlminb初始值的选取。希望阅读到这的朋友给出些建议。
最后指出在stata4,maxLik等扩展包中有更多关于mle的东西,你可以通过查看帮助文档来学习它。
附1:辅助程序代码
Newtons<-function (fun, x, ep=1e-5,it_max=100){
index<-0; k<-1
while (k<=it_max){
x1 <- x; obj <- fun(x);
x <- x - solve(obj$J, obj$f);
norm <- sqrt((x-x1) %*% (x-x1))
if (norm<ep){
index<-1; break
}
k<-k+1
}
obj <- fun(x);
list(root=x, it=k, index=index, FunVal= obj$f)
}
ga<-function(x){
ga<-1
for(i in 1:length(x)){
ga<-ga*gamma(x[i]+1)
}
ga
}
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10