样本统计量与总体的关系,抽样分布的概念性质
本文对抽样分布的概念、无偏差和最小偏差等性质,以及中心极限定理和样本比例的抽样分布进行总结。
1 抽样分布基本概念
参数(parameter):参数是对总体的数值描述,因为是总体,所以值经常是未知的。
样本统计量(sample statistics):样本的数值描述,利用样本计算而来。
常见的参数和样本统计量如下表所示。
抽样分布(sampling distribution):统计量的概率分布,根据n个测量值的样本计算得到。
2 抽样分布的性质
性质一:无偏性
无偏估计(unbisaed estimate):样本统计量的抽样分布均值和要估计的总体参数相等,就认为这个统计量是参数的无偏估计。
有偏估计(biased estimate):抽样分布的均值和要顾及的参数不相等,就认为这个统计量是参数的有偏估计。
性质二:最小方差
如果两组统计量的抽样分部都无偏,我们更加倾向选择标注差最小的,抽样分部的标准差也被成为统计量的标准误(standard error of the statistic)。
3.1x¯的抽样分部的性质:
x¯的抽样分布的性质:
1.抽样分部的均值等于抽样总体的均值,
2.抽样分部的标准差等于:
(标准差σx¯一般被称为均值的标准误(standard error of the mean)。
3.正态分布的抽样分布:如果从一个服从正态分布的总体中选取一个有n个观测值的随机样本,那么x¯的抽样分布也是一个正态分布。
3.2 中心极限定理
从一个均值为μ、标准差为σ的总体中选取一个有n个观测值的随机样本。那么当n足够大时,x¯的抽样分布将近似服从均值、标准差的正态分布。并且样本量越大,对x¯的抽样分布的正太近似越好。
4 样本比例的抽样分布
和样本均值是总体均值的良好估计一样,样本比例(记为p^),是总体比例p的良好估计。和样本均值的抽样分布有着类似的性质。
p^的抽样分布性质:
1. 抽样分布的均值等于二项比例p,也就是。因此,p^是p的无偏估计。
2. 抽样分布的标准差等于
对于大样本,抽样分布近似于正太。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20