大数据时代:安全第一,还是效率第一
随着互联网的脚步,大数据悄然而至,随着互联网影响的逐渐深入,大数据也开始发散它的能量。大数据和云计算加在一起甚至被人誉为信息产业的第三次高峰,与智能化生产、无线网络革命共同被称为引领未来繁荣的三大技术变革。
但大数据却像一枚硬币,有其两面:一面它将催生新型科技公司、吸纳科技人才就业,并为企业发展转型提供新机遇;另一面它对个人、企业甚至国家带来个人隐私危机、重构信息安全、竞争力差距拉大、数据产权争端等诸多挑战。
技术“照亮”个性化
数据古已有之,但互联网的产生为数据带来了质的突变。有统计显示,过去两年累积的数据量已超过了以往所有历史的总和,该数据还在以每年40%的速度增长,即信息总量每两年就翻一番。
之所以称为大数据时代,不单是指数据之大,规模只是先决条件,更主要是指数据正在成为一种资产或者生产资料。任何行业、任何领域都会产生有价值的数据,而对这些数据的统计、分析、挖掘和人工智能则会创造意想不到的价值和财富。
这项技术已在很多领域“开花结果”:比如在农业领域,硅谷有个气候公司,他们根据各地降雨、气温、土壤状况和历年农作物产量相关度的情况来预测农场来年产量,进而向农户出售个性化保险(放心保)。在中国,阿里巴巴根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。
科学界和舆论界给予了大数据高度的评价。《华尔街日报》将大数据时代与智能化生产、无线网络革命被称为引领未来繁荣的三大技术变革。
如果我们站在一个更乐观的角度,大数据可能会与第一次工业革命、第二次工业革命相提并论,成为一次新的工业革命。电子科技大学互联网科学中心主任周涛对《中国产经新闻》记者表示,因为它已具备了每次工业革命中最重要的因素,它的新能源是计算,新材料是数据,同时它还有先进的工业技术,也就是更聪明的头脑,怎么在这些材料中分析出更大的价值。
与前两次工业革命规模化、自动化的特征相比,周涛认为,大数据有其鲜明的特征,那就是在规模化和自动化之下的个性化。“我们在历史上第一次有机会把不同类型、来自不同地方的数据围绕着一个东西形成了一个完整的描述。”
比如一个人,我们有他的短信和通话数据、有他微博的内容数据、有他医保和社保的数据、还有他的交通数据、签到数据、社交关系数据等等,得益于这些数据,我们不仅能对这个人形成深刻的认识,而且能打造出完全个性化的服务。
不仅可以针对用户进行个性化的服务,还可以针对商品、地点进行个性化的服务。周涛说,这个个性化不是孤立的个性化,而是和第一次、第二次工业革命相结合,在规模化和自动化之下的个性化。大数据让自动地、成规模地为成千上万的人提供完全量身定制的服务成为了可能。
比如我们有1亿多用户的数据,我们可以给每个用户打500多个标签,根据每个用户有没有车、有没有房、有没有小孩和健康需求、金融理财需求等来区分他的长期、短期和即时兴趣。金融、证券、媒体、教育等各行中的企业可以根据这些认识来决定自己的市场广告投放方向和销售营销策略。
21世纪被誉为个性化的时代,但这一切如果没有技术的支撑,个性化终究只是空谈,只有扫除了技术上的障碍,个性化才有可能真正变为现实。应运而生的大数据让个性化真正照进现实。
转型契机来临
大数据被誉为下一个创新、竞争、生产力提高的前沿阵地,发达国家纷纷将开发利用大数据作为抢夺下一轮竞争制高点的抓手。大数据就像是一座矿山,孕育着大量的财富和机遇,对大数据的开采将催生新型科技公司和吸纳科技人才就业,对数据的利用将成为企业发展转型的突破点。
目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模之大已难以用常规软件工具对其进行抓取、管理和处理,这就需要借助于专业的技术公司,以大数据技术为核心业务的公司应运而生。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21