大数据时代的企业管理挑战
互联网时代,创新使得财富积累的速度前所未有的快,贫富不均也前所未有地分化。这个时代,世界的竞争变成人与人的竞争,人与人的竞争就是智慧的竞争,就是人的创新能力的竞争。如何才能提高人的竞争力,是管理科学面临的新课题,是管理者必须要思考的难题。
笔者认为,基于互联网大数据发展产生的以下管理挑战,值得关注:
第一个挑战是大数据对人性假设的挑战。
管理学自诞生开始,就以人为对象,以人性假设为前提不断演化出各种理论。第一个提出科学管理理论的泰勒假设人是“经济人”,后来梅奥假设人是“社会人”,西蒙则构造了“决策人假设”。自西蒙之后,又有了各种各样新的理论:战略管理、营销管理、人力资源管理等,基本都是以西蒙的假设为预设。
社交媒体的诞生,意味着人不再是抽象的假设,而是一种基于大数据的画像。可以认为,大数据令管理科学真正进入到了可量化的科学发展阶段,通过大数据对人进行定量化描述,必然会引发管理科学的飞跃。
第二个挑战是数字化虚拟世界里,如何进行管理实践。
由于量子力学的发明,人类进入了电子时代;计算机的发明,让人类又进入了数据时代。通过计算,我们可以用拓扑的方式去重构现实世界,这种方法可以使人在现实与虚拟中间通过一个旋转门,进而优化现实世界。比如交通中的一些难以解决的问题,通过大数据不断优化方案,反复再现结果,最终解决现实中的难题。
最近热炒的人工智能(AI),预示着人类新的文明历程。阿尔法狗打败柯洁后,聂卫平评价说人类的围棋选手最高是9段,阿尔法狗是20段。阿尔法狗强大的地方是它的计算速度比人反应快。但今天的AI并没有像很多媒体所描述的那样功能强大,它只是能在一个特定的、复杂的、可重复的工作环境里比人做得更好。
计算机的算法不是今天才有的,上世纪90年代就已经发明了,为什么那个时候计算机没有自我学习能力呢?因为在当时的条件下,计算机的速度还不够快,数据量也不够多。计算机高速运转之后,所生成的数据量是前所未有的,甚至每天产生的数据量都是以前的总和。大数据时代要求计算能力越来越快,存储能力越来越强。今天我们任何一台智能手机都比当年的英特尔“奔腾”速度快上千倍。我们现在使用的神经网络计算方式,也更具有自学习的能力。
在这样一个自学习、数字化虚拟世界里,管理实践者该如何去做管理?
第三个挑战是大数据对营销学的挑战。
营销学是管理学的一个重要分支,包括四个基本策略的组合,即大家经常说的产品、价格、渠道、促销4P理论,但在今天以客户为中心的、定制化的生产方式下,4P理论还有效吗?
例如小米手机,它通过互联网征求客户意见——客户需要一个什么样的手机,什么样的外观,什么样的性能,什么样的价钱,用什么样渠道传递给客户?在这样的环境下,4P理论是否需要进行修正?
再例如医药领域现在有精准医疗、靶向治疗。每个人得感冒的时候,感染的细菌或病毒都不是完全一样的,过去使用广谱抗生素,抗菌谱比较宽。现在出现的靶向药,通过培养患者感染的细菌或病毒,反向制出一种新的抗生素,非常精准地进行针对性的治疗。
今天,一位肿瘤患者会请老医生诊治,请大专家会诊,但今后,阿尔法狗将会取代老医生,因为再老的医生最多就是“9段”,但是阿尔法狗可以是“20段”,这就是大数据在治疗中的优势。很多肿瘤的治疗方法是化疗和放疗,化放疗的方案设计是和医生的判断有很大关系的,阿尔法狗的方案优化能力比人类更强。
当然,我们现在对阿尔法狗不放心,就像我们一开始不信任电子账单一样,在手工账单和电子账单并行一段时间后,大家不再怀疑计算机的计算能力。可以想象一下,如果从诊断到治疗都是由大数据来完成的时候,它的运算能力一定会极大提高医疗的水平。将来,我们在社区或者任何地方,都可以享受到顶级的治疗。届时,传统的营销学将面临巨大挑战。
第四个挑战是工业4.0生产要素社会化后,管理模型该如何变化。
工业4.0,我理解它包含三件事:智能工厂、智能生产、智能物流。传统的数据管理,数据还是要落地的,未来数据是不能够落地的,直接的、无缝连接的,整个车间管理是自动化的,企业管理是网络化的,生产要素的组合是社会化的。
为什么会出现工业4.0?这其实是工业自身发展变化后寻找的出路。传统的制造业方式、营销方式、研发系统,显然不再适合。生产成本也不仅仅考虑材料、科研、制造成本、资金成本这些数据,而是要和社会的应用环境相结合,即生产要素的社会化。
生产要素社会化之后,组织生产管理必然是一个大的网络环节,一定是用计算机的方式,用互联网的方式来进行传输,一直到最终的加工设备上全部实现智能化,这是未来制造业的发展方向。我们的管理模型随之该如何变化?
第五个挑战是大数据时代新的安全观。
早些年有一本书《现代战争》,它提出未来的战争不是无限的,而是有限度的战争。现在,社会安全的重点是反恐。这是一种新的安全观,从战争模式、国防模式,进入到民生和社会的模式上来。现在再发动战争的话,不能靠传统的武器去打了,而是要依靠网络安全、信息安全。
在安全领域里,视频监控产业发展非常快。新加坡的车辆有电子车牌,大数据实时监控,一旦人员密集,就会形成电子围栏,车辆再进入就会自动收费。甚至边境线也可以使用电子围栏技术,代替界碑。正在发展中的人脸识别技术,今后也可以用于安全技术,这些都是新的安全防范措施。
随之而来的整个社会的公共管理和相应的产业、企业管理将会进入到一个新的课题,这些都是大数据时代所带来的变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30