大数据的风口上,企业数据如何进行价值变现
对于大数据,研究机构Gartner给出了这样的定义:大数据是需要新处理模式,才能具有更强的决策力、洞察发现力和流程优化能力,来适应海量、高增长率和多样化的信息资产。
这两年可以看到越来越多的大数据公司诞生,试图挖掘公开数据这座矿山里的宝藏。大数据的价值不在数据本身,而在数据的应用上,而如何搭建应用场景,让大家对数据产生需求,正是大数据公司在做的事。
大数据公司到底在做什么?
企业信息查询和销售线索挖掘是企业数据应用的两个方向。
企业信息查询属于基础应用,如天眼查、企查查等数据平台,基于开放数据和共享的政府公共数据,实现数据采集、数据清洗、数据聚合和数据建模的一站式信息查询服务。在数据应用上,企查查偏向金融征信方面,通过与金融机构达成合作,获取第一手数据变动信息。对于个人用户,可以查到企业的工商信息、股东法人信息、诉讼失信信息等等;同时,企查查会给金融机构提供服务,并收取服务费,这也是其收入来源。而天眼查除了企业信息查询,还可以查到人和人、人和公司、公司和公司之间的关系,为用户在商业调查过程中提供关系信息支撑。
销售线索挖掘则是更深层次的大数据应用,将爬取到的互联网公开数据和来自政府机构等官方网站的工商信息,进行清洗和加工,构建可量化的用户画像,为不同领域的用户或企业提供销售解决方案。
譬如商理事,它是一个给企业销售人员提供线索的平台,用户在平台注册后就可以发布销售线索和合作资源,除了与天眼查合作开放数据,它的信息部分是来自用户自主上传,更类似于信息资源交换平台。
探迹则选择了不同的领域作为切入点,作为To B企业的销售预测解决方案提供商,探迹通过分析和挖掘全网在线企业数据信息,再结合企业内部的CRM系统,利用机器学习自动建立量化客户模型,为To B企业在全国数千万公司中精准挖掘潜在客户的线索。
可见,同样做大数据的公司,其具体业务也有根本差异,从企业信息查询到销售线索挖掘,企业数据逐渐向深层次、精细化的应用发展。
实际场景中的数据应用
个人篇
有时候,当求职者想应聘一家公司,除了官网信息和网络上的新闻,还有哪些渠道可以看到这家公司的具体信息呢?几乎没有,而对于求职者来说,了解公司是否合法成立、是否有拖欠工资等劳资纠纷行为是十分必要的,一个人想要搜集这些重要信息往往无从入手。
当投资者看中了一家初创企业,想了解更多的信息以决定是否投资的时候,除了基本的企业工商信息,可能还需要了解企业是否和其他公司、其他投资人有关系,而这些信息并不容易获取。
企业信息查询平台的出现,解决了这个痛点,用户可以在上面查询企业的工商信息、股东法人信息、诉讼失信信息等等,直观地了解投资人和公司、公司和公司之间的关系等,节省了搜集、筛选信息的时间和精力。
企业篇
当下,大数据对企业的商业决策和行为越来越重要,依靠传统的市场调研或购买调查报告等方式,得到的往往是滞后的数据信息,而企业自身又缺乏信息挖掘的技术和资源,难以获取到实时、精准的商业数据信息。
譬如销售,通常是企业收入来源的重要部门,对于新客营销来说,对目标客户群体的认知不够充分、销售线索和品牌客户太少等问题,会让企业在开拓新客户上寸步难行;而在客户维护上,企业CRM通常缺少优化的工具,难以从中筛选出有效的营销线索。这导致传统的企业销售人员只能依靠人工经验,在对方需求不明的情况下逐一联系客户进行销售,客户意向率自然不高。
像这类问题属于销售预测领域,这是目前企业数据的一个重要应用,尤其是对于To B企业,对销售线索的需求量非常大,而企业自身难以提供大量资源去寻找潜在企业客户的线索。
针对To
B企业领域的销售预测,探迹给出了更智能的解决方案:运用人工智能和大数据技术,挖掘全网在线企业信息,建立企业知识图谱,帮企业从知识图谱中匹配优质潜在客户。此外,探迹还会对潜在客户评分,通过丰富线索难度,计算与模型的契合度,帮助客户把现有的销售线索进行打分和排序,从而聚焦更高价值的潜在客户。
对To B企业而言,通过探迹智能预测平台,能够方便快捷地获取精准的潜在客户线索,而无需做客户调研、信息搜集等繁琐的前端销售工作,销售人员能节省大量的时间精力放在精准客户上。
企业数据做为大数据的一部分,在商业市场中越来越受到重视,而大数据公司要如何将数据变成宝藏,则需要深入到具体的应用场景去提供解决方案,增加用户和数据的黏性。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21