Python数据分析之真实IP请求Pandas详解
这篇文章主要给大家介绍了Python数据分析之真实IP请求Pandas,文中通过示例嗲吗给大家介绍的很详细,相信对大家的学习或者理解具有一定的参考借鉴价值.pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrame
import pandas as pd
1.1. Pandas分析步骤
1、载入日志数据
2、载入area_ip数据
3、将 real_ip 请求数 进行 COUNT。类似如下SQL:
SELECT inet_aton(l.real_ip),
count(*),
a.addr
FROM log AS l
INNER JOIN area_ip AS a
ON a.start_ip_num <= inet_aton(l.real_ip)
AND a.end_ip_num >= inet_aton(l.real_ip)
GROUP BY real_ip
ORDER BY count(*)
LIMIT 0, 100;
1.2. 代码
cat pd_ng_log_stat.py
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from ng_line_parser import NgLineParser
import pandas as pd
import socket
import struct
class PDNgLogStat(object):
def __init__(self):
self.ng_line_parser = NgLineParser()
def _log_line_iter(self, pathes):
"""解析文件中的每一行并生成一个迭代器"""
for path in pathes:
with open(path, 'r') as f:
for index, line in enumerate(f):
self.ng_line_parser.parse(line)
yield self.ng_line_parser.to_dict()
def _ip2num(self, ip):
"""用于IP转化为数字"""
ip_num = -1
try:
# 将IP转化成INT/LONG 数字
ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0])
except:
pass
finally:
return ip_num
def _get_addr_by_ip(self, ip):
"""通过给的IP获得地址"""
ip_num = self._ip2num(ip)
try:
addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) &
(ip_num <= self.ip_addr_df.ip_end_num)]
addr = addr_df.at[addr_df.index.tolist()[0], 'addr']
return addr
except:
return None
def load_data(self, path):
"""通过给的文件路径加载数据生成 DataFrame"""
self.df = pd.DataFrame(self._log_line_iter(path))
def uv_real_ip(self, top = 100):
"""统计cdn ip量"""
group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列
# 直接统计次数
url_req_grp = self.df[group_by_cols].groupby(
self.df['real_ip'])
return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count')
def uv_real_ip_addr(self, top = 100):
"""统计real ip 地址量"""
cnt_df = self.uv_real_ip(top)
# 添加 ip 地址 列
cnt_df.insert(len(cnt_df.columns),
'addr',
cnt_df.index.map(self._get_addr_by_ip))
return cnt_df
def load_ip_addr(self, path):
"""加载IP"""
cols = ['id', 'ip_start_num', 'ip_end_num',
'ip_start', 'ip_end', 'addr', 'operator']
self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id')
return self.ip_addr_df
def main():
file_pathes = ['www.ttmark.com.access.log']
pd_ng_log_stat = PDNgLogStat()
pd_ng_log_stat.load_data(file_pathes)
# 加载 ip 地址
area_ip_path = 'area_ip.csv'
pd_ng_log_stat.load_ip_addr(area_ip_path)
# 统计 用户真实 IP 访问量 和 地址
print pd_ng_log_stat.uv_real_ip_addr()
if __name__ == '__main__':
main()
运行统计和输出结果
python pd_ng_log_stat.py
count addr
real_ip
60.191.123.80 101013 浙江省杭州市
- 32691 None
218.30.118.79 22523 北京市
......
136.243.152.18 889 德国
157.55.39.219 889 美国
66.249.65.170 888 美国
[100 rows x 2 columns]
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作带来一定的帮助,如果有疑问大家可以留言交流。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20