
Python数据分析之真实IP请求Pandas详解
这篇文章主要给大家介绍了Python数据分析之真实IP请求Pandas,文中通过示例嗲吗给大家介绍的很详细,相信对大家的学习或者理解具有一定的参考借鉴价值.pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrame
import pandas as pd
1.1. Pandas分析步骤
1、载入日志数据
2、载入area_ip数据
3、将 real_ip 请求数 进行 COUNT。类似如下SQL:
SELECT inet_aton(l.real_ip),
count(*),
a.addr
FROM log AS l
INNER JOIN area_ip AS a
ON a.start_ip_num <= inet_aton(l.real_ip)
AND a.end_ip_num >= inet_aton(l.real_ip)
GROUP BY real_ip
ORDER BY count(*)
LIMIT 0, 100;
1.2. 代码
cat pd_ng_log_stat.py
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from ng_line_parser import NgLineParser
import pandas as pd
import socket
import struct
class PDNgLogStat(object):
def __init__(self):
self.ng_line_parser = NgLineParser()
def _log_line_iter(self, pathes):
"""解析文件中的每一行并生成一个迭代器"""
for path in pathes:
with open(path, 'r') as f:
for index, line in enumerate(f):
self.ng_line_parser.parse(line)
yield self.ng_line_parser.to_dict()
def _ip2num(self, ip):
"""用于IP转化为数字"""
ip_num = -1
try:
# 将IP转化成INT/LONG 数字
ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0])
except:
pass
finally:
return ip_num
def _get_addr_by_ip(self, ip):
"""通过给的IP获得地址"""
ip_num = self._ip2num(ip)
try:
addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) &
(ip_num <= self.ip_addr_df.ip_end_num)]
addr = addr_df.at[addr_df.index.tolist()[0], 'addr']
return addr
except:
return None
def load_data(self, path):
"""通过给的文件路径加载数据生成 DataFrame"""
self.df = pd.DataFrame(self._log_line_iter(path))
def uv_real_ip(self, top = 100):
"""统计cdn ip量"""
group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列
# 直接统计次数
url_req_grp = self.df[group_by_cols].groupby(
self.df['real_ip'])
return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count')
def uv_real_ip_addr(self, top = 100):
"""统计real ip 地址量"""
cnt_df = self.uv_real_ip(top)
# 添加 ip 地址 列
cnt_df.insert(len(cnt_df.columns),
'addr',
cnt_df.index.map(self._get_addr_by_ip))
return cnt_df
def load_ip_addr(self, path):
"""加载IP"""
cols = ['id', 'ip_start_num', 'ip_end_num',
'ip_start', 'ip_end', 'addr', 'operator']
self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id')
return self.ip_addr_df
def main():
file_pathes = ['www.ttmark.com.access.log']
pd_ng_log_stat = PDNgLogStat()
pd_ng_log_stat.load_data(file_pathes)
# 加载 ip 地址
area_ip_path = 'area_ip.csv'
pd_ng_log_stat.load_ip_addr(area_ip_path)
# 统计 用户真实 IP 访问量 和 地址
print pd_ng_log_stat.uv_real_ip_addr()
if __name__ == '__main__':
main()
运行统计和输出结果
python pd_ng_log_stat.py
count addr
real_ip
60.191.123.80 101013 浙江省杭州市
- 32691 None
218.30.118.79 22523 北京市
......
136.243.152.18 889 德国
157.55.39.219 889 美国
66.249.65.170 888 美国
[100 rows x 2 columns]
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作带来一定的帮助,如果有疑问大家可以留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07