京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python数据分析之真实IP请求Pandas详解
这篇文章主要给大家介绍了Python数据分析之真实IP请求Pandas,文中通过示例嗲吗给大家介绍的很详细,相信对大家的学习或者理解具有一定的参考借鉴价值.pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrame
import pandas as pd
1.1. Pandas分析步骤
1、载入日志数据
2、载入area_ip数据
3、将 real_ip 请求数 进行 COUNT。类似如下SQL:
SELECT inet_aton(l.real_ip),
count(*),
a.addr
FROM log AS l
INNER JOIN area_ip AS a
ON a.start_ip_num <= inet_aton(l.real_ip)
AND a.end_ip_num >= inet_aton(l.real_ip)
GROUP BY real_ip
ORDER BY count(*)
LIMIT 0, 100;
1.2. 代码
cat pd_ng_log_stat.py
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from ng_line_parser import NgLineParser
import pandas as pd
import socket
import struct
class PDNgLogStat(object):
def __init__(self):
self.ng_line_parser = NgLineParser()
def _log_line_iter(self, pathes):
"""解析文件中的每一行并生成一个迭代器"""
for path in pathes:
with open(path, 'r') as f:
for index, line in enumerate(f):
self.ng_line_parser.parse(line)
yield self.ng_line_parser.to_dict()
def _ip2num(self, ip):
"""用于IP转化为数字"""
ip_num = -1
try:
# 将IP转化成INT/LONG 数字
ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0])
except:
pass
finally:
return ip_num
def _get_addr_by_ip(self, ip):
"""通过给的IP获得地址"""
ip_num = self._ip2num(ip)
try:
addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) &
(ip_num <= self.ip_addr_df.ip_end_num)]
addr = addr_df.at[addr_df.index.tolist()[0], 'addr']
return addr
except:
return None
def load_data(self, path):
"""通过给的文件路径加载数据生成 DataFrame"""
self.df = pd.DataFrame(self._log_line_iter(path))
def uv_real_ip(self, top = 100):
"""统计cdn ip量"""
group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列
# 直接统计次数
url_req_grp = self.df[group_by_cols].groupby(
self.df['real_ip'])
return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count')
def uv_real_ip_addr(self, top = 100):
"""统计real ip 地址量"""
cnt_df = self.uv_real_ip(top)
# 添加 ip 地址 列
cnt_df.insert(len(cnt_df.columns),
'addr',
cnt_df.index.map(self._get_addr_by_ip))
return cnt_df
def load_ip_addr(self, path):
"""加载IP"""
cols = ['id', 'ip_start_num', 'ip_end_num',
'ip_start', 'ip_end', 'addr', 'operator']
self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id')
return self.ip_addr_df
def main():
file_pathes = ['www.ttmark.com.access.log']
pd_ng_log_stat = PDNgLogStat()
pd_ng_log_stat.load_data(file_pathes)
# 加载 ip 地址
area_ip_path = 'area_ip.csv'
pd_ng_log_stat.load_ip_addr(area_ip_path)
# 统计 用户真实 IP 访问量 和 地址
print pd_ng_log_stat.uv_real_ip_addr()
if __name__ == '__main__':
main()
运行统计和输出结果
python pd_ng_log_stat.py
count addr
real_ip
60.191.123.80 101013 浙江省杭州市
- 32691 None
218.30.118.79 22523 北京市
......
136.243.152.18 889 德国
157.55.39.219 889 美国
66.249.65.170 888 美国
[100 rows x 2 columns]
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作带来一定的帮助,如果有疑问大家可以留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30