医疗大数据的“苟且”与远方
医疗人工智能的基础,是医疗大数据的挖掘和应用。有关医疗大数据,这是这几年互联网医疗领域流传最广的故事。虽然每一家创业公司的模式千差万别,但无一例外都会有一条:对大数据的挖掘和应用,虽然关于如何实现的部分往往语焉不详。这充分反映了两个问题:所有人都意识到了医疗大数据开发的价值,但开发的路径却难度很高。
于是,我们听到的第一代医疗大数据的故事就变成了以下这个样子:
▍有关数据来源
中国互联网医疗可以说是白手起家,至今为止仍然不受传统医疗体系待见。所以,早期的医疗大数据基本上都只能来自互联网医疗公司自身的积累。这里的“早期”既指时间上的早期,又包括开发思路上的早期。那么,早期的数据来源大概有这么几类(欢迎补充):
在线咨询类公司——这类公司既有综合型的,又有垂直型的。数据积累的方式上主要是通过医患在线问诊的方式,建立患者个人的电子健康档案;
智能硬件类公司——纯粹的智能硬件在医疗领域的应用日渐式微,但越来越多的医疗服务开始结合智能硬件,比如血糖、血压、体温、心律等,数据积累方式主要是对用户体征数据的检测;
基因检测类公司——基因检测在近两年日趋火爆,主要是受到检测成本降低和精准医疗的推动,门槛大大降低,使得越来越多的普通用户能够消费基因检测。
科研工具类公司——虽然与医患资源类公司一样是收集患者的疾病数据,但科研类公司收集数据的形式、应用明显不同,科研机构在数据积累过程中发挥了主导作用。
▍有关数据应用
在医疗大数据版本一的故事里面,之所以是早期,主要还是因为开发利用方式的早期。在这个阶段,虽然关于医疗大数据、人工智能已经有了概念,但在此时能接受这样故事的人毕竟还太少,也太遥远。于是,版本一里面应用医疗大数据的方式基本有这么积累:
服务于医疗本身——长期以来,患者个人是不掌握自己的医疗数据的。互联网医疗出现后,用户可以通过手机来收集自己的健康数据,帮助医生更好的了解自身的健康历史;
服务于医药企业——药企对数据的需求既强烈又多元,包括市场营销需求、新药研发需求、应用反馈需求等。因此,鉴于药企买单欲望强烈,很多数据应用商都主动向药企考虑;
服务于保险公司——这一点中美有些差异,美国保险公司对数据的应用主要是对医疗服务质量和费用的控制,而在我国,保险公司对数据的应用则主要是设计新的保险产品。
▍有关应用现状
其实在版本一的故事里,已经有一些有了很好的应用效果,比如药物警戒,用医疗数据来弥补临床数据的缺陷,及时反馈药品不良反应、治疗效果等;再比如保险控费,用医疗大数据控制服务质量和费用,控制和减少保险欺诈行为等。这些领域之所有比较好的应用,主要是因为药企和保险公司的商业驱动力更强。当然,这也仅是在美国。
虽然我们前面罗列了不少有关医疗数据的来源和积累,但实际当中,这些案例都或多或少存在着问题。甚至由于这些问题的存在,版本一里面这些比较浅层次的数据应用都还处于非常遥远的阶段。
数据的完整和有效性——互联网医疗毕竟是新兴事物,用户有接受程度和使用习惯的问题,而且硬件设备也存在功能和精准度的问题。这使得数据收集面临着不完整且缺乏连续性的问题,而且大多数硬件设备没有取得医疗资质,采集的数据也无法做医疗级应用。
数据处于割裂的状态——互联网医疗产品主要收集的是患者在医院的健康数据,而对医院内的数据鞭长莫及。加上医院与互联网医疗无法打通,这导致了医疗数据在院内院外割裂存在的状况。而且由于医院本身信息孤岛的问题,患者在不同医院求医的数据也是碎片化存在。
数据规模仍然非常小——作为大数据应用,目前的医疗数据采集规模根本达不到“大”的程度。一个是很多创业公司的数据都是从头积累,再一个是市场认知度仍然有限,最典型的就是基因检测,很多公司的样本量还处在几十个、几百个的水平。这使得目前的医疗数据基本无法实现商业化。
当然还有一个问题,段院长在他的文章里也指出了,就是医疗大数据并没有被认真对待,或者说挂羊头卖狗肉。我国的大多数互联网医疗公司打的仍然是医院号源的主意,仍然是一种快速变现的心态,也无怪乎令人感叹,“我们多数的移动医疗创新公司还在拼命的靠补贴靠地推在拉用户,在做挂号黄牛的生意,真的令人很失望。”
故 事
版 本 二
关于医疗大数据,最令人兴奋的应用无疑还是在临床方面。比如时下最热门的精准医疗几乎火到没朋友。但精准医疗因为相对初级还跟数据应用关系不大,主要是取决于两点:要么是技术上取得特别重大的突破,要么是概念上找到特别唬人的方法。另外一个医疗大数据在临床上的应用,则是临床辅助诊断,或者更遥远一点,人工智能医生。
在临床上发挥机器的作用,首先需要对临床数据的有效挖掘利用。传统的公立医院在这一点上是完全指望不上的,根本原因在于没有任何激励机制的存在。而早期医疗大数据的应用之所以对医院敬而远之,主要是开发难度太高。
受限于信息化程度,医院往往处于信息孤岛的封闭状态,内部信息系统纷繁复杂标准不一,而且有大量的病例数据以纸质状态存在。数据清洗要实现标准化、结构化的难度非常大,而且还需要打通院内院外数据的流动。
当然,这里还必须提到数据安全。美国已经不止一次爆出医疗数据泄露或受到攻击的案例。而来自Ponemon推出的一份报告《2013年数据泄露成本研究》显示,医疗行业的数据泄露成本最高,平均每个患者的医疗信息泄露带来的信息安全管理成本高达233美元,远高于零售业的78美元。而当大量商业公司在明目张胆的打着靠数据赚钱旗号的时候,临床数据的开发确实需要非常谨慎。
▍新数据来源
不过临床数据开发的迟滞,仍然是造成我们的医疗大数据推进缓慢的一个重要因素。所以,在版本二的故事里,我们看到了已经有创业公司努力在临床数据上进行探索。(欢迎补充)
临床数据的聚合 ——医院内的医疗数据也是分散的,HIS、LIS、PACS等系统里都储存不同类型的病例数据。因为这些系统来自不同厂商,数据标准不一,医院内部也缺乏完整、连续的数据资料。所以,在医院实现数据聚合成为临床数据开发的一个小前提。已经有创业公司在这方面探索,并得到了资本市场的认可。
临床数据的开放——当然还不是公立医院数据的开放,而且公立医院目前的信息系统也很难支持开放。不过,已经有很多创业公司在尝试临床数据开放,甚至直接开办医院、诊所来重构底层信息系统。再加上很多SaaS模式的诊所管理系统的出现,就为医疗数据的共享以及与智能硬件设备的对接创造了条件。
临床数据去中心——很多人相信,医院只是时代的产物,会逐渐消失,所以医疗数据也未必一定要在医疗机构内产生。随着新技术和数据采集方式的进步,包括诊疗数据、研发数据等,都在逐渐突破医疗机构的边界,进入人们的客厅、日常生活。这种数据采集的量和周期,都是医院内数据采集所无法比拟的。
▍应用和问题
这些在临床数据开发方面的努力,为未来人工智能的研发创造了可能。恐怕也还只是限于可能,距离真正的应用还有一段距离。当然,在AlphaGo完胜李世石以后,人工智能所展示出的进步速度让所有人惊艳。说不定五年后,机器人医生就真的出现在社区诊所了。但是眼下的问题恐怕还是必须要克服:
数据解读——围棋棋盘的可能性毕竟是可以穷尽的,但目前的人工智能还无法解决未知因素的问题。尤其是在医疗领域,不仅是未知因素的问题,甚至还有无知因素的问题。很多因素不仅医疗数据的采集范围之外,更是在人类的认知范围之外。不要说癌症这种人类尚未攻克的疾病,绝大多数疾病都存在着相当多的未知因素。
数据规模——医疗数据的应用前提条件是数据规模要足够大。其实,这一点中国的情况要比美国好多了。比如说,中国一家三甲医院的数据量几乎抵得上美国一个州的量。但问题是,有能力、有条件、有机会开发应用这些数据的机会太少。财大气粗的保险公司在医院面前都毫无谈判能力,遑论弱小的互联网医疗公司。恐怕只能指望高瞻远瞩的医院院长,发挥鲶鱼效应。
数据监管——对于政府监管来说,医疗数据的应用是个新问题。起码至今,究竟医疗数据归谁所有的问题都没有明确。而一旦医疗数据被滥用,危害是极大的。一个非常简单的道理,你的银行卡密码可以修改,但你的基因信息能修改么?虽然现在对基因的解读能力有限,但是只要样本成功采集一次,就可以无限检测。所以如果你的基因数据泄露了,后果会是怎样呢?
最后,可能还是野心的问题。如果已经收集到了一批数据,马上就能商业变现,就能挣大钱,有几个人还愿意去搞什么人工智能呢?
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20