大数据引导生物医学变革
大数据影响的深度和广度仍在不断扩张。对于生物医学来说,其发展过程中积淀的数据资源,是大数据时代的基础之一。而大数据的挖掘和应用,反过来也在引发着生物医学的变革。
在此次论坛上,专家们围绕“大数据在医学科技创新中的应用”这一话题,进行了深入的交流探讨。与会专家指出,生物大数据已经成为欧美国家重要的发展战略,而我国生物医学大数据开发同发达国家尚有一定差距,亟须加强相关研究和投入。
大数据引发医学研究变革
“大数据是大趋势,使得生产资料中首次出现了非物质成分:数据。世界正在由资本经济时代向数据经济时代过渡,数据及其服务成为国家战略和经济的基础设施。”军事医学科学院研究员朱云平长期从事生物信息学综合数据库及平台建设研究,在他看来,生物和医疗领域已成为重要的大数据领域。
中国工程院院士、中日友好医院院长王辰指出,大数据时代的来临,加上转化医学的兴起,在我国形成了历史性契机,可望使中国医学研究实现历史性跨越。
首都医科大学附属北京安贞医院心脏内科中心主任马长生正在承担“北京市心血管疾病防控大数据平台建设”的工作,在他的研究中,包括用大数据手段研究环境和心血管疾病的关系。“用大数据的手段,每日不同站点PM2.5浓度与心血管疾病的关系,甚至股票波动与心血管疾病的关系,都可以得到预测。”
“美国发布的年度癌肿报告,其实是一份恶性肿瘤大数据分析报告。”中国医学科学院肿瘤医院副院长王绿化介绍,中国正在建设脑肿瘤大数据平台,旨在提供数据样本资源库,同时为八大肿瘤建立知识库和分析库。
而事实上,大数据不仅为生物医学研究带来了新的技术手段,还具有大规模降低医疗费用的潜在效益。根据美国BCC research公司研究显示,仅就与高通量测序相关的组学大数据而言,至2018年,其市场总额将增长至76亿美元,复合年增长率达到71%。麦肯锡全球研究院报告,如果美国医疗保健行业对大数据进行有效利用,就能把成本降低8%左右,从而每年创造出超过3000亿美元的产值。
发达国家经验与挑战
大数据科学与产业具有较强的领域相关性,生物大数据已经成为欧美国家重要的发展战略,也是美国国家大数据计划的重要组成部分。
朱云平介绍,欧美主导的国际生命科学计划产生的数据和知识,已成为重要的国家资源。例如国际人类基因组单体型图计划、DNA元件百科全书计划、人类表观基因组计划、国际癌基因组计划、千人基因组计划等,这些计划形成的数据资源潜在价值十分巨大。
2009年,美国出台HITECH法案,将医疗卫生信息化列为重点发展方向,十年内累计投入2760亿美元。加拿大也在规划EHRS蓝图,旨在全面推进国家医疗信息化、电子监控档案建设。英国10年内投入超过120亿英镑,用于建设全国一体化的医疗信息系统。欧盟则发力统一的e-health体系建设,10年投入超过60亿欧元。
但在我国,却存在缺失生物数字主权的尴尬。近年来中国学者在国外发表了众多学术论文,在发文章时,需要先把数据传输给国外杂志社。“在国外发表文章后,名义上是说可以获得数据共享,但中国学者需要的许多数据并不是想拿就能拿到的。”朱云平说。
朱云平指出,我国医疗数据几乎不能共享,转化利用率低。而美国目前已经初步实现了社区、医院、区域的医疗数据共享系统。现实导致我国缺少自主知识产权的高价值生物数据库,且我国生物大数据分析能力严重不足。
这使得中国学者在使用国外数据时,必须支付高昂的费用。例如,世界最为权威的代谢通路数据库KEGG,其使用费为每年5000美元。权威的人类疾病相关变异数据库HGMD,其年费是3725美元。权威的药物基因组变异与药物反应数据库PGMD,其年费也达3735美元。
生物大数据事关国家未来战略
去年9月谷歌公司宣布成立Calico公司,利用大数据进行人类衰老及相关疾病方面的研究。亚马逊通过其云平台托管国际千人基因组计划庞大数据库,并免费开放。微软也启动了microsoft biology initiative项目,进军生物医学大数据领域。据悉,美国已建成覆盖本土的12个区域电子病历数据中心、9个医疗知识中心和8个医学影像与生物信息数据中心。
但是,我国生物医学大数据产业尚未形成。朱云平说,我国迫切需要建立国家级生物大数据技术研发基地。
所幸的是,国家“863”计划2015年度项目申报指南中,在生物和医药技术领域已经部署“生物大数据开发与利用关键技术研究”,涉及的内容包括生物大数据标准化和集成、融合技术,生物大数据表述索引、搜索与存储访问技术,心血管疾病和肿瘤疾病大数据处理分析与应用研究,机遇区域医疗与健康大数据处理分析与应用研究,组学大数据中心和知识库构建与服务技术等。
“生物医学大数据开发与利用,应面向我国生物数据汇集、管理、共享与利用的重大需求,重点突破生物大数据质量控制、集成融合、索引组织、存储管理、搜索访问、数据可视化、分析建模、知识库构建等关键技术。”朱云平建议。
加强专业人才培养也尤为迫切。王辰指出,为适应生物医学大数据的发展,应在生物医学领域加强计算机科学、数据库专业人员的培养,加强流行病学、统计分析、信息学人员、标本库管理人员的培养。
不过,生物医学大数据也存在一定的风险。大数据中心的可靠性和隐私保护是其中的关键。
“数据中心崩溃的风险,可以通过在不同地域、不同条件下进行生物大数据存储,再进行协同整合来解决。但在生物大数据的分析应用中,需要收集一切已知的生物信息,这与隐私保护存在冲突。”朱云平认为,如何在应用生物大数据的同时,更好地保护个人隐私信息,需要深入研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31