大数据的产业链分析
大数据的产业链分析大数据完整的产业链构成如下图所示,可分为标准与规范、数据安全、数据采集、数据存储与管理、数据分析与挖掘、数据运维以及数据应用几个环节,覆盖了数据从产生到应用的整个生命周期。
1 数据标准与规范
大数据标准体系是开展大数据应用的前提条件,没有统一的标准体系,数据共享、分析、挖掘、决策支持将无从谈起。大数据标准包括体系结构标准、数据格式与表示标准、组织管理标准、安全标准和评测标准。在标准化建设方面,参与单位主要包括中国电子技术标准化研究院、各个数据库公司、数据拥有部门以及各个行业的标准化组织。
2 数据安全
随着海量数据的不断增加,对数据存储和访问的安全性要求越来越高,从而对数据的访问控制技术、加密保护技术以及多副本与容灾机制等提出了更高的要求。另外,由于大数据处理主要采用分布式计算方法,这必然面临着数据传输、信息交互等环节,如何在这些环节中保护数据价值不泄露、信息不丢失,保护所有站点的安全是大数据发展面对的重大挑战。在大数据时代,传统的隐私数据内涵与外延有了巨大突破和延伸,数据的多元化与彼此的关联性进一步发展,使得对单一数据的隐私保护方法变得极其脆弱,需要针对多元数据融合的安全提出。在数据安全环节上主要参与单位包括中国电子科技集团公司第30研究所以及奇虎 360、瑞星等杀毒软件公司。
3 数据采集
政府部门、以 BAT 为代表的互联网企业、运营商是当前大数据的主要拥有者。除此之外,利用网络爬虫或网站公开 API 等途径对网络数据进行采集也是大数据的主要来源。现实世界中的数据大多不完整或不一致,无法直接进行数据挖掘或挖掘结果不理想,需要对采集的数据进行填补、平滑、合并、规格化、检查一致性等数据预处理操作,并且往往需要大量的人工参与,因此数据采集和清洗成为大数据产业链的一个重要环节。
4 数据存储与管理
大数据存储与管理的主要参与者以传统数据库企业为主,国际上主要有 IBM、Oracle、Intel、Green-plum、infor Matri Cloudera 等; 国内主要有中兴、华为、用友、浪潮、托尔思、数据堂、九次方、亿赞普、达梦等。各家企业针对大数据应用开展各具特色的数据库架构和数据组织管理研究,形成针对具体领域的产品。
5 数据分析与挖掘
大数据分析与挖掘的意图主要集中在两方面: 一是从大量的机构结构化和半结构化数据中分析出计算机可以理解的语义信息或知识,二是对隐性的知识,如关联情况、意图等进行挖掘。常用的方法包括分类、聚类、关联规则挖掘、序列模式挖掘、时间序列分析预测等。数据分析与挖掘的核心算法与软件主要掌握在大型数据库公司及高校的手里,国际上主要参与者包括 IBM、甲骨文、微软、谷歌、亚马逊、Facebook 等,国内主要参与单位包括数据库企业、高校、以 BAT 为代表的大型互联网企业等。数据分析与挖掘的能力直接决定了大数据的应用推广程度和范围,是大数据产业的核心。
6 数据运维
由于数据的重要性得到普遍认可,除政府部门不具备数据运维服务条件外,数据的采集者通常就是数据运维者。各地政府方面则通常利用大数据平台建设来推动政府大数据的公开与共享,如云上贵州,吸引个人和企业用户开展创新与创业,积极推动大数据的增值服务。
7 数据应用
大数据对传统信息技术带来革命性挑战,正在重构信息技术体系和产业格局。国内以阿里巴巴、百度、腾讯、人大金仓、浪潮、曙光、南大通用为代表的互联网企业、云计算和数据库厂商纷纷加大应用推广力度,在国际先进的开源大数据技术基础上,形成独自的大数据平台构建和应用服务解决方案,以支撑不同行业不同领域的专业化应用。虽然这些企业在平台构建上有着得天独厚的优势,但是在某些具体业务领域,并不擅长或者关切。传统企业以及从事大数据的微型企业是具体业务领域上大数据应用的主力军。应用是大数据价值的体现,是大数据发展的原始推动力。当前大数据的应用正倒逼软件技术、数据架构、数据共享方式的转变,在转变思维过程中需要积极转变思维,明确出数据共享的方式是什么,数据拥有者的利益如何平衡,商业模式如何开展等等。
数据分析咨询请扫描二维码
作为数据分析领域的探险家,我们常常面临着选择正确工具和技能的挑战。在这个数字化时代,学会并精通适合行业需求的工具显得尤为 ...
2024-12-03在数据分析领域,掌握多种软件和编程语言至关重要,选择合适的工具取决于个人需求和背景。让我们一起探索常用的数据分析工具及其 ...
2024-12-03在数据驱动的时代,数据分析成为了关键的技能。选择合适的数据分析工具至关重要,因为它们直接影响着你对数据的理解和分析效果。 ...
2024-12-03在当今数字化时代,数据分析已经成为各行各业中至关重要的角色。随着技术的迅猛发展和数据量的爆炸增长,数据分析师需要不断提升 ...
2024-12-03在当今数据驱动的世界中,数据分析已成为企业决策制定和战略规划的关键。其中,数据可视化是将复杂数据转化为简洁、易懂图形的重 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。学会利用数据进行分析不仅是一种技能,更是一种战略性决策工具。本文将探讨学 ...
2024-12-03揭示数据的无限价值 学习数据分析不仅仅是一种技能,更是探索信息海洋中宝藏的钥匙。数据分析的实用性体现在多个领域,如企业决 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。成为一名优秀的数据分析师,不仅需要具备技术实力,更需要拥有跨学科的知识储 ...
2024-12-03在当今数据驱动的世界中,成为一名优秀的数据分析师需要具备多方面的技能和知识。从统计学基础到机器学习算法,再到沟通能力和业 ...
2024-12-03在当今信息爆炸的时代,数据分析扮演着至关重要的角色。从商业决策到科学研究,数据分析为我们提供了深刻的洞察力和指导方向。然 ...
2024-12-03数据分析的基础知识 数据分析是一个多步骤且复杂的过程,旨在从数据中提取有价值信息以支持决策。这涉及数据的收集、清洗、转换 ...
2024-12-03数据分析是一门引人入胜且充满挑战的领域,它串联着数据的意义与我们的决策需求。无论你是初学者还是经验丰富的专家,掌握数据分 ...
2024-12-03数据分析培训的就业前景展现出令人振奋的态势。随着大数据、人工智能等前沿技术的快速发展,数据分析在各行各业中的应用愈发广泛 ...
2024-12-03在当今数字化时代,数据分析技能的重要性日益凸显。随着大数据、人工智能等领域的迅速发展,数据分析已经成为各行各业中备受瞩目 ...
2024-12-03作为一名数据分析师,除了扎实的数学基础外,掌握软技能同样至关重要。本文将深入探讨数据分析领域中不可或缺的软技能,并结合个 ...
2024-12-03市场需求与技术驱动 数据分析师的职业前景广阔,市场需求旺盛。在金融、医疗、零售、科技等领域,企业对数据分析师的需求不断攀 ...
2024-12-03市场需求与前景 数据分析师的职业前景广阔,伴随着多元化技能要求和清晰的职业发展路径。 在金融、医疗、零售、科技等领域, ...
2024-12-03作为数据分析师,掌握正确的工具和技能至关重要。在当今数据驱动的世界中,Python作为一种多才多艺的编程语言,在数据分析领域扮 ...
2024-12-03在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要掌握各种工具和技能来从海量数据中提炼出有价值的信息。其中 ...
2024-12-03数据分析实践是一门引人入胜的艺术,融合了技术与创意,为各行业带来前所未有的洞察力与决策支持。本文将探讨数据分析实战案例的 ...
2024-12-03