大数据分析停滞不前 信任问题面临大考
有时候大数据分析似乎总是在原地踏步,似乎数据信任的问题阻碍了数据分析的进一步应用。业务领导们理解新数据分析是必须经历的转型,但是他们不确定这种转变是否值得信赖。最近,来自咨询专业服务公司KPMG(毕马威会计事务所)的一份调查报告对这种进退两难的处境给出了一些看法。
大数据分析停滞不前 信任问题面临大考
Forrester研究公司在2016年7月发起了一份调查报告,针对KPMG(毕马威会计事务所)管理的2165位数据和分析决策制造商进行调查。报告显示,数据和分析工具已被广泛用于分析现有客户(50%)和发现新客户(48%)。然而,只有大约34%的业务负责人“非常信任”工具分析业务运营数据得到的结论。
有迹象表明,在数据和分析工具方面的投入在增加。因此,数据分析领域的专家Bill
Nowacki认为,分析结果的受信任程度理所当然也在变好。在SearchDataManagement组织的一次采访中,Nowacki表示分析工具需要更透明。也就是说,分析工具应该给管理层展示推荐观点背后的逻辑,展示分析工具给出结论的依据。
研究结果似乎把焦点集中在了数据信任的空白。未来大家对数据质量持有信心的趋势如何呢?
Bill Nowacki表示,目前大家对于“分析是必不可少的”这一核心理念已经基本认同了。不过,与此同时我们对管理层的培训还不够,业界普遍应该对此采取一定措施。
我们可以从调查报告的统计图表中看到,对分析的整体接受度展示出来是U形走势。回想前几年,那时候真的像是“西部狂野时代”,大家都在构建各种分析模型,没有充分的审查就很快直接购买。这些工具都被纳入常规决策。这种状态持续了较长一段时间。
后来,我们看到某些决策并没有预期的那么准确和最优。模型的真实可信度就面临了很大挑战。现在,我们处在U形趋势的底部,不过也开始苏醒了,现在是时候以更加严肃的态度来看待它了。我们要考虑使用哪些数据,数据来自哪里,数据是否足够正确等等。
业界已经有一些预测模型在使用了,尤其是在市场营销和定价方面。人们用模型做优化或者资产管理。我们看到许多类似的案例。但是,如果涉及到公司的关键业务,我们要确保业务稳定就要慎重考虑了。我们开始看到了U型趋势的另一边——低谷后的上升趋势,不过结构合理性、治理、法规遵从都要求更多分析透明度。
机器学习用于预测分析并没有改善透明度。看来要打开“黑盒子”帮助提升数据信任度并不容易啊。
如果你回顾一下FICO公司(全球预测分析和决策管理公司)的发展历程,就会发现在20世纪80年代到90年代,他们已经使用神经网络实现了较好的高度可预测的信用评分。不过,缺失的仍然是解释能力。
监管人员会来告诉我,“如果你想让大家都相信,你必须能解释为什么。”在“西部狂野时代”模型刚诞生时,大家都需要更好的透明度。我们需要理解引擎为什么会给出这些观点,并理解这些观点代表什么。
如果工具都是“黑盒子”,大家很难信任它。因此,在设计阶段做选择时应考虑提高透明度,这样可以逐渐培养一些信任。
今天我们看到的是更加深思熟虑的设计,我们花时间思考怎样才可以达到更好的效果,这样才会获得长足发展。例如,人们会检查他们的零售店投资组合,利用所有签名或登记信息发现所有店铺里真正优质的客户群。你能拿到的是所有的真实样本,可以在这个群体中设定目标价格,看是否能得到预期结果。一旦确认价格调整在小范围客户群中有效,就可以一点一点实施到更大范围的群体中。这种小步变革的方式很容易实现逐步推广。
高管们已经逐渐接受针对各种业务进行分析,但是没有什么比成功案例更有说服力了。我们应该深思熟虑地看待市场,看看我们设定的试验目标并验证之前利用大数据对市场的预测,这样也可以帮助增加对数据分析工具的信任。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31