从西方的总统大选看人工智能的“从政”之路
人工智能这项技术在政治竞选中已变得司空见惯,有些人甚至声称,特朗普能够成功当选美国总统,人工智能起到了至关重要的作用。
现在是从政的最好时机。但现在更是成为一名能为政治家效力的人工智能工程师的绝佳时机。
纵观现代历史,政治候选人只通过掌控有限数量的工具来控制选民的情绪。通常情况下,他们在竞选时,所依靠的是他们的本能而非洞察力。
而现在,大数据可以被用来最大限度地提高竞选的有效性。而据悉,下一阶段将在竞选活动和政治生活中更多地使用人工智能。
机器学习系统是建立在能够自动识别数据模式的统计技术基础上的。这些系统已经可以通过对法案文本以及其他变量的算法进行评估,而其他变量包括赞助商的数量、每年提交给国会的时间等信息,来预测美国国会将通过什么法案。
美国总统大选
如今,机器和人工智能也正被小心地部署在选举活动中,以吸引选民,帮助他们在关键的政治问题上获得更多的信息。
这当然会引发伦理问题。例如,有证据表明,美国现任总统特朗普在2016年的竞选活动中,使用人工智能技术来操纵选民。一些人甚至声称,这些人工智能工具在投票结果中起着决定性作用。
人工智能可以被用来操控个人选民。在2016年美国总统大选期间,数据科学公司剑桥分析公司推出了一项大范围的广告宣传活动,目标是根据民众的个人心理状况,挑选有潜力的选民。
这些都是基于选民的实时数据,这些数据来自于他们在社交媒体上的行为,他们的消费模式和人际关系。他们的互联网足迹被用来构建独特的行为和心理特征。
这种方法的问题不在于技术本身,而在于不公开的宣传活动,以及虚假的政治讯息传播。像特朗普这样具有灵活竞选承诺的候选人尤其适合这种策略。每个选民都可以被发送一种定制的信息,强调某一特定论点的不同侧面。每个选民都认识到不同的特朗普。关键是要找到合适的情感触发因素来刺激每个人的行动。
这个高度复杂的微目标操作依赖于大数据和机器学习来影响人们的情绪。不同的选民根据他们对不同论点的敏感性的预测,接收到不同的信息。妄想狂们收到的是基于恐惧的信息,具有保守倾向的人会收到关于传统和社区争论的信息。
英国大选&英国脱欧公投
但是,目前还不清楚在英国脱欧公投之前,人工智能在竞选中是否扮演了角色,又扮演了什么样的角色。
我们已经知道人工智能可以用来操纵公众舆论。在2017年的英国大选中,大量的政治机器人被用于在社交媒体上传播错误信息和虚假新闻。2016年美国总统大选和全球其他几场关键的政治选举也出现了同样的情况。
这些机器人都是一些自动账户,它们的程序被设定为积极地散布片面政治信息,制造公众支持的假象。这是一种越来越常用的策略,来试图影响公众舆论,扭曲政治情绪。
这些机器人通常伪装成普通的人类账户,散布错误信息,在Twitter和Facebook等网站上引发激烈的政治讨论。他们可以用来突出社交媒体上关于候选人的负面信息,这些信息更有可能让选民投票给他们,这个想法是为了阻止他们在选举日出来投票。
在2016年的大选中,支持特朗普的机器人甚至通过传播自动内容的推特标签和Facebook页面,潜入到了希拉里克的支持者中,影响选民的政治情绪。
法国总统大选
在2017年的法国总统大选中,机器人也被部署在一个关键时刻,在Facebook和Twitter上抛出了大量来自候选人埃马纽埃尔·马克龙竞选团队的电子邮件。信息转储也包含了关于他的金融交易的虚假信息。马克龙泄密的目的是构建一种说法,让大家认为马克龙是一个骗子和伪君子——这是机器人用来推动热门话题和主导社交媒体的常用策略。
人们很容易将人工智能技术归咎于世界的错误(以及失败的选举),但基础技术本身本质上是无害的。用来误导、误传和迷惑的算法工具,同样可以用来支持民主。
人工智能应该参与竞选活动吗
人工智能可以被用来以一种合乎道德和法律的方式更好地进行竞选活动。例如,当人们分享包含已知错误信息的文章时,我们可以让政治机器人参与进来。他们可以发出警告,说这些信息是可疑的,并解释原因。这能有助于揭穿那些众所周知的谎言,就像那篇错误地宣称教皇支持特朗普的不实文章一样。
我们可以用人工智能来更好地听取人们的意见,并确保他们选出的代表清楚地听到他们的声音。基于这些见解,我们可以部署微型目标竞选活动,帮助选民了解各种政治问题,帮助他们形成自己的想法。
人们经常被电视辩论和报纸上的政治信息所淹没。人工智能可以帮助他们根据自己最关心的事情来发现每个候选人的政治立场。例如,如果一个人对环境政策感兴趣,就可以使用人工智能定位工具来帮助他们了解每个候选人对环境的看法。至关重要的是,个性化的政治广告必须为选民服务,帮助他们获得更多信息,而不是削弱他们的利益。
在政治中使用人工智能技术不会很快就消失。这对政客及其竞选活动来说太有价值了。然而,他们应该承诺在道德上明智地使用人工智能,以确保他们在改变选民的意见时最终不会破坏民主。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20