大数据时代车险理赔的变革
大数据时代,车险理赔正在发生变革。目前总体车险保费增长趋缓,保险经营主体不断扩充、供需结构失衡,各家公司业务规模挑战不断加大。
商车改革的不断深化,将进一步的放开前端管住后端,后端就是服务,理赔就是服务的入口,理赔部门在保险公司的作用不断增强;在综合成本率的结构中,费用占比下降、赔付占比上升,挤水分,反欺诈,进一步提高理赔效率,对公司理赔管理的能力提出更高的要求,对于车险理赔渗漏的容忍度进一步降低,对理赔减损的动力进一步提升。
面对新形势、新环境,进一步转变思想、运用大数据实现精细化管理,对不同需求的客户提供差异化服务,才能在激烈的竞争中取胜。首先要做的就是成本控制,保险公司内部需要通过相应的手段进一步进行成本控制。其次,服务提升,保险公司需要不断推出个性化产品满足客户需求。最后,快速响应,在理赔环节需要快速响应支撑前端产品变化。
值得我们关注的是,车险领域的不连续性即将出现。任何技术一定会遭遇其发展的极限性。其含义是,在某个时点,该技术会被新的技术来取代。两个S曲线之间的间隙,就代表着技术的不连续性,能否跨越这个不连续性,关乎生死存亡。
单一的数据来源不足以克服数据中的瑕疵,吸纳多个来源的数据,将其处理成为高度智能的社会关系图,从而能够找出数据间的潜在关系。
除了数据完整度和准确度提升,大数据技术还带来了效率提升,提供自动化的数据诊断、结构、清洗、一致化和标准化工作。
此外,一个数据处理人员一个小时之内就可以完成,大数据在具体操作环节上具有更快的反应速度。
这些变化对车险理赔服务带来那些变化?
首先,运用大数据技术进行精准的客户细分。在保险理赔服务当中,实现对客户的脸谱刻画和群分,满足客户个性化的需求是关键(见图一)。
其次,通过大数据的关联分析,可以有效识别欺诈风险,尤其是在反欺诈当中的合谋欺诈。运用高新技术手段,通过与第三方数据结合,可以找到合谋欺诈中的源头。
第三个环节是反应速度加快。在传统的时代当中,更多依靠小型机进行数据处理和解决,现在会通过更多的高性能、高密度的服务器进行数据的储存,这就意味这件事会处理得更快更有效,在下一步进行数据分析判断的时候,可以在同一时间当中处理更多的数据(见图二)。
最后,未来在更多的数据处理环节当中,模型和算法会有更多的替代规则,大数据模型可作为现行规则的补充,提升理赔各环节处理效率。在美国保险公司中规则用了几十年,模型对规则具有66%的改善,因为通过模型可以判断哪些规则已经失效了,哪些规则需要新增,基于模型可以把一些真正的高风险案件集中在一个非常小的区域范围内。
数据为王的时代,如果有质量较高的数据效果会更好,一致性会更强、损失会更小、客户满意度更高。大数据的产品和服务可以做到短时间内快速响应,车险理赔服务要跟得上,未来会通过云服务平台产生一个新的产品,通过云服务平台很多事件可以得到马上响应。
未来的竞争就是数据质量的竞争,随着数据处理技术的成熟,越来越多的数据被整合起来,为保险公司运营提供支持,保险公司自身的数据积累是未来制胜的关键。对于保险公司来讲,未来和第三方合作建立自己大数据服务体系,数据质量是非常关键的。保险公司除了大量的引入第三方数据之外,最核心的就是要不断地提升自身数据的质量,希望车险理赔在不连续性进步曲线当中完成华丽转身。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30