大数据指数基金发行提速
随着南方、广发、博时3家基金公司率先发力大数据基金产品,这一全新的基金品种正成为眼下互联网基金领域新的焦点。目前,10余家基金公司正在申请或已经获批成立发行大数据指数基金产品。中国证监会最新公告显示,已获批3只,等待“准生证”的有5只,再加上已经成立的上海东方证券资管、南方基金、广发基金、博时基金旗下的8只大数据基金,大数据基金的数量将达16只,涉及的互联网公司有雪球、360金融、百度等在内的20余家。
有望跑赢传统指数
国务院日前印发的《促进大数据发展行动纲要》提出,要全面推进大数据发展和应用,深化大数据在各行业的创新应用。众禄基金研究中心王晶认为,近期发行的互联网大数据基金产品已不仅仅停留在借助互联网技术渠道或电商平台进行销售的阶段,而是在进一步应用互联网数据进行主动管理、灵活择时择股等方面有更多尝试。
“金融行业对数据具有天生的依赖性,数据应用的发展也推动着金融业的创新发展。大数据基金实际上是在互联网行业发展背景下,群体智慧对决个体智慧。”一家阳光私募的投资经理王卓玮表示,传统指数往往由一些媒体和第三方投资顾问公司合作制作,信息源少、数据相对有限、成份股更新慢,在基金投资中过于依赖个人智慧。而互联网大数据指数通过各个互联网平台不断更新数据源,能够实时推动海量用户参与数据完善。当大数据指数能够更好地呈现某一板块或上市公司的未来前景时,其投资价值有望超越传统指数。
以国内首只社交投资大数据指数中证雪球领先组合100指数为例,这一指数是天弘基金基于雪球大V用户的评论信息和投资组合数据所构建的互联网大数据指数。与市场其他指数不同,它对投资者“思想”和“行为”的反馈更多。
博时基金副总裁王德英表示,传统投资方式主要是投研人员去上市公司调研,了解财务数据来做投资决策,而大数据基金通过海量数据分析,对公司未来表现的预测确定性有望加强。可以说大数据基金是传统投研方式的升级,能反映部分传统数据无法统计的方面,比如投资者情绪、市场热点的变化等。
同时,大数据指数的调整更为灵活。王晶介绍,大数据指数基金跟踪指数调整周期短,一般为1个月,这类基金换股快,个股投资比例小,有效避免单一股票对组合的影响。从成立时间较长的银河定投宝和广发100来看,两只基金前十大重仓股持股比例不超过20%,而且前十大重仓股更换率均较高。
多方面有待完善
在看到大数据诸多优势之余,有专家也表示,大数据基金实际上是基于多因子模型的指数投资产品,互联网大数据只是其中一个选股因子,对于市场因子、基本面因子等其他因子依然要重视,否则指数本身走势将会失真。
目前,大数据基本来源于3个渠道:电商、门户网站和搜索网站。不同渠道的数据特征有所不同。比如,电商的数据包含成交额、价格走势等,而搜索网站的数据更多反映了用户的关注点和情绪因素,而不是实际发生的行为,门户网站的数据也更多反映用户关注点和情绪。
数据来源的不同,导致大数据指数量化选股模型不同,造成各只基金的风格、投向不同。即使依据相同大数据的基金风格也差别很大,比如新浪参与的2只大数据指数是基于新浪财经数据和微博社交数据,银联公司涉足的3只指数均基于同一线下刷卡消费数据源,奇虎360的指数基于其搜索和手机、电脑数据。而同样是与雪球联合的中证雪球社交投资精选大数据指数、中证雪球领先组合100指数在数据源选择上就有相当程度的重合。
有专家表示,互联网数据来源范围限制或重叠,容易导致有效覆盖样本股范围较窄,且受数据噪音影响造成还原市场投资情绪偏离较大,易受人为主观因素干扰。如银联公司涉足的3只大数据指数,均采用银联线下POS收单数据、针对消费领域数据,且银联线下数据来源渠道复杂,样本重合度较大,较易造成相互干扰。“从市场上已成立基金的业绩表现看,大数据基金的中长期业绩比较稳健。”王卓玮说。
针对未来前景,业内人士表示,大数据基金还有许多需要完善的地方,可以通过产品迭代和试错来解决。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28